

Mark Scheme (Results)

Autumn 2020

Pearson Edexcel GCE In A Level Statistics (9ST0/02) Paper 2: Statistical Inference

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020 Publications Code 9ST0_02_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

Total marks

The total number of marks for the paper is 80.

Mark types

The Edexcel Statistics mark schemes use the following types of marks:

• **M Method** marks, awarded for 'knowing a method and attempting to apply it',

unless otherwise indicated.

- A Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B Unconditional accuracy** marks are independent of M marks
- E Explanation marks

NOTE: Marks should not be subdivided.

Abbreviations

These are some of the marking abbreviations that will appear in the mark schemes.

- ft follow through
- PI possibly implied
- cao correct answer only
- cso correct solution only (There must be no errors in this part of the question)
- awrt answers which round to
- awfw answers which fall within (a given range)
- SC special case
- nms no method shown
- oe or equivalent
- dep dependent (on a given mark or objective)
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper

Further notes

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied **positively**. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is **no ceiling** on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- All A marks are 'correct answer only' (cao.), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through.
- After a **misread**, the subsequent A marks affected are treated as A1ft, but manifestly absurd answers should never be awarded A marks.
- **Crossed out** work should be marked UNLESS the candidate has replaced it with an alternative response.
- If **two solutions** are given, each should be marked, and the resultant mark should be the mean of the two marks, rounded down to the nearest integer if needed.

Question	Sch	eme	Marks	AO	Notes
1(a)	$6.3 \pm z \times \frac{0.74}{\sqrt{14}}$		M1	1.3	PI (z or t)
	z = 1.96 (or 2.0 to	2 s.f.)	B1	1.3	PI or t=2.160
	CI is (5.91, 6.69)		A1	1.3	awrt (5.9, 6.7)
1(b)	5.8 is not in the co	onfidence interval	B1ft	2.1b	oe comparison of 5.8 with their CI
	There is significat the mean weight of months of age is of kg	nt evidence that of baby girls at 3 lifferent from 5.8	E1dep	2.1a	oe Dep on previous B1
1(c)	It is a random sample of babies weights at 3 months of age in Rose's clinic				oe
	The babies' weigl age in Rose's clin distributed	nts at 3 months of ic are normally			oe
	The standard deviation of the babies' weights at 3 months of age in Rose's clinic is the same as the standard deviation for UK babies				oe
				3.1a, 3.1a	Any 2 for 2 marks
		Total	7		

Question	Scheme	Marks	AO	Notes
2	Exact binomial method			
	$H_0: \pi = 0.75$ $H_1: \pi > 0.75$	B1	1.3	Both correct Condone use of 'p'
	n = 45 so let X ~ B (45, 0.75)	B1	1.3	Use of Binomial with n=45
	$P(X \ge 36)$	M1	1.3	
	$= 1 - P(X \le 35)$	M1	1.3	
	= 0.27997	A1	1.3	AWRT 0.28 or CR:X≥39
	(0.28 > 0.05) so do not reject H ₀	A1dep	2.1b	PI Dep on correct ts/ cv oe
	Julia's survey result does not provide evidence that the percentage preferring unwrapped cucumbers is higher than 75% or There is insufficient evidence members of her gardening club have a greater preference for unwrapped cucumbers.	E1dep	2.1a	Dep on correct ts/ cv oe

Question	Scheme	Marks	AO	Notes
	Critical Region method			
	$H_0: \pi = 0.75$	(D 1)		Both correct
	$H_1: \pi > 0.75$	(B1)		Condone use of 'p'
	n = 45 so let X ~ B (45, 0.75)	(B1)		Use of Binomial with n=45
		(M1)		Attempt to evaluate $P(X \ge x)$ to find CR
	$P(X \ge 39) = 0.044$	(M1)		P(X \geq 39) calculated condone P(X \geq 38)=0.094
	CR: X≥39	(A1)		CR:X≥39
	(36 < 39) so do not reject H ₀	(A1dep)		PI Dep on correct ts/ cv oe
	Julia's survey result does not provide evidence that the percentage preferring unwrapped cucumbers is higher than 75% or There is insufficient evidence members of her gardening club have a greater preference for unwrapped cucumbers.	(E1dep)		Dep on correct ts/ cv oe

Question	Sch	eme	Marks	AO	Notes
2	Normal approxim	nation method			
(cont)	$H_0: \pi = 0.75$ $H_1: \pi > 0.75$		(B1)		Both correct Condone use of 'p'
	$\hat{\mathbf{p}} = \frac{36}{45}$	$\frac{1}{2} = 0.8$	(B1)		
	$test\ statistic = \frac{0.8 - 0.75}{\sqrt{\frac{0.75 \times 0.25}{45}}}$		(M1)		PI Correct numerator Allow actual numbers rather than proportions
			(M1)		Correct denominator
	<i>test statistic</i> = 0.775 or <i>p</i> -value = 0.219		(A1)		ts AWFW 0.77 - 0.78 or <i>p</i> -value
	(0.775 <1.6649 or 0.219 > 0.05) so do not reject H ₀		(A1dep)		PI Dep on correct ts/ cv oe
	Julia's survey result does not provide evidence that the percentage preferring unwrapped cucumbers is higher than 75% or There is insufficient evidence members of her gardening club have a greater preference for unwrapped cucumbers.		(E1dep)		Dep on correct ts/ cv oe
LI		Total	7		1

Question	Scheme	Marks	AO	Notes
3(a)	$\alpha = 0.05$ OR df = n - 1 = 24	B1	1.3	Mark for use of α =0.05 if <i>p</i> -value method used or for correct df if critical value method used PI
	p-value = 0.00752 used with 0.05 or $t = 2.619$ used with $t_{24}(0.05) =$ 1.71	M1	1.3	
	0.00752 < 0.05 or 2.619 > $t_{24}(0.05) = 1.71$ ∴ reject H ₀	A1dep	2.1b	Dep B1 M1
	There is evidence at the 5% level that the children did better , on average, in the test after practising the skill.	E1dep	2.1a	cso Dep on all previous marks
3(b)	Type I error is rejecting H_0 when H_0 is true	E1	3.1a	Possibly stated in context
	P(type I error) = 0.05	A1	2.1a	

Question	Sch	eme	Marks	AO	Notes
3(c)	The conclusion n reliable as	nay not be			Any sensible reason
	The differences in be normally distri	scores may not buted			
	The improvement have been due to t program.	in scores may not he computer	E1	2 1h	
	The pupils may not be representative of the population as a whole.		EI	3.10	
	The conclusion is likely to be reliable as				
	The 25 children as sample (of progra	e 25 children are a random nple (of program users)			
		Total	6		

Question	Sc	heme		Marks	AO		Notes
4(a)	$\frac{5\times57}{95}=3$	2		M1	1.3	Att cal	empted method for culating at least one
	18	12				exp	bected value - PI
	3	2					
	1.8	1.2				At	least one relevant
	7.8	5.2		A1	1.3	exp	bected value
	23.4	15.6					
	57	38					
	Expected values Australia & Sou and South Amer So these regions combined with e others)	s < 5 for th Africa, Far East ica need to be each other (or		E1	3.1a		
4(b)	H₀: no association (between region of the world and sex of player)H₁: an association (between region of the world and sex of player)		1	B1	1.3	Bo	th correct
	Observed frequencies:						
	Region of the World			Men	Wom	en	
	Eastern Europe			11	19		
	USA & Canada			8	5		
	Western Europ	Western Europe		29	10		
	Other Regions of the World		9	4	-		
				M1	1.3	Ob req (Ot onl PI	served frequencies uired for combined her regions) class y

Question	Scheme	Marks	AO	Notes				
4(b)	Expected frequencies:							
(cont)	Region of the World	Men	Wom	en				
	Eastern Europe	18	12					
	USA & Canada	7.8	5.2					
	Western Europe	23.4	15.6					
	Other Regions of the World	7.8	5.2					
		A1	1.3	Expe all cl appe PI	ected values for lasses but may ear in 4(a) above			
	awrt values in table							
	Contribution to χ^2 :							
	Region of the World	Men	Wom	en				
	Eastern Europe	2.722	4.083					
	USA & Canada	0.005	0.007					
	Western Europe	1.340	2.010					
	Other Regions of the World	0.185	0.277					
		M1	1.3	Atter PI	mpt at $\frac{(O-E)^2}{E}$			
	Test stat = $\frac{(11-18)^2}{18} + \dots + \frac{(4-5.2)^2}{5.2}$	M1	1.3	Inter PI	ntion to sum			
	$\chi^2 = 10.63$	A1	1.3	awrt	10.6			

Question	Sch	eme	Marks	AO	Notes
4(b) (cont)	p-value = 0.0139 or cv of χ^2 at 5% level = 7.81		M1	1.3	<i>p</i> -value must be compared with $\alpha =$ 0.05
	10.63 > 7.81 or 0.0139 < 0.05 so reject H ₀		A1dep	2.1b	Dep on ts/ cv or <i>p</i> - value correct PI
	There is significant evidence of an association between region of the world and sex of player		E1dep	2.1a	Dep on ts/ cv or <i>p</i> -value correct
4(c)	The greatest contribution (4.08) to the association is from women and 'Eastern Europe" where more women were observed (19) than would be expected (12) from		Elft	2.1a	Or fewer men from Eastern Europe No numerical justification
Eastern Europe to earn at leas million in 2018.		earn at least \$1	E1ft	2.1b	Full numerical justification
		Total	14		

Question	Sch	eme	Marks	AO	Notes
5(a)	Sign Test		B1	2.1a	
	H ₀ : population me H ₁ : population me	edian = -0.02 edian > -0.02	B1	1.3	Condone use of η or two-tail H ₁ May be awarded if seen in (b)
	$P(x \le 2) = 0.0547 >$ Do not reject H ₀	> 0.05	E1	2.1b	
5(b)	H ₀ : population average = -0.02 H ₁ : population average > -0.02		B1	1.3	One-tail H ₁ used Allow mean or median oe μ/η
	Ranks of X : 2 1 3 4 5 6 7 8 9 10		M1	1.3	Only first two required check table
	W = 1 + 2 = 3		A1	1.3	Or 52
	$cv = 11$ (for $\alpha = 0.05$, one-tailed)		B1	1.3	Or 44
	3 < 11 so reject H ₀ (one-tailed)		M1	2.1b	Same tail comparison
	Sufficient evidence that the average performance for SW London is better than the average for England.		E1	2.1a	Allow mean or median Dep on correct ts/cv
5(c)	 5(c) If the ranks are consistent with a symmetric population then Wilcoxon can be used. (Otherwise the sign test is needed) 		E1	3.1a	
Use Wilcoxon if possible because it is a more powerful test OR Use Wilcoxon if possible as it takes account of the sizes of the differences rather than just the +/- signs			E1	3.1a	
		Total	11		

Question	Scheme	Marks	AO	Notes
6(a)	For a double-blind trial neither the patients nor the doctors/researchers should know which treatment has been assigned to any patient.	E1	1.1	
	Patients would be aware of which diet/treatment they were receiving so it couldn't be a double-blind trial.	E1	1.1	
6(b)		B1	1.3	both
	Test stat $=\frac{10.7-3.1}{\sqrt{\left(\frac{9.6^2}{104}+\frac{7.0^2}{95}\right)}}=6.419$	M1	1.3	10.7 – 3.1
		M1	1.3	$\sqrt{\left(\frac{9.6^2}{104} + \frac{7.0^2}{95}\right)}$
	Test stat = 6.419	A1	1.3	AWRT 6.42 Ignore sign
	Critical value = ± 1.96 OR <i>p</i> -value P(z > 6.419) = 1.37 x 10 ⁻¹⁰	B1	1.3	Z > 6.419 implied by correct <i>p</i> -value
	(6.419>1.96 or 1.37 x 10 ⁻¹⁰ <0.025) so reject H ₀	A1dep	2.1b	cv correct and compared with ts OR <i>p</i> -value compared to 0.025 PI Dep on cv/ ts or <i>p</i> - value correct
	There is significant evidence of a difference in mean weight loss between patients assigned to Diet A and those assigned to Diet B	E1dep	2.1a	Conclusion correct and in context; test all correct Dep on cv/ ts or <i>p</i> - value correct

Question	Scheme	Marks	AO	Notes
	Alternative			
		(B1)		oe both
	Test stat = $\frac{10.7 - 3.1}{\sqrt{\left(\frac{8.46^2}{104} + \frac{8.46^2}{95}\right)}} = 6.33$	(M1)		10.7 - 3.1
	$\sqrt{\left(\frac{8.46^2}{104} + \frac{8.46^2}{95}\right)}$	(M1)		Use their sp ²
	Test stat = 6.33	(A1)		AWRT 6.33 Ignore sign
	Critical value = ± 1.972 OR <i>p</i> -value P(<i>z</i> > 6.33) = 1.62 x 10 ⁻⁹	(B1)		<i>z</i> > 6.33 implied by correct <i>p</i> -value
	(6.33>1.97 or 1.62 x 10 ⁻⁹ <0.025) so reject H ₀	(A1dep)		cv correct and compared with ts OR <i>p</i> -value compared to 0.025 PI Dep on cv/ ts or <i>p</i> - value correct
	There is significant evidence of a difference in mean weight loss between patients assigned to Diet A and those assigned to Diet B	(E1dep)		Conclusion correct and in context; test all correct Dep on cv/ ts or <i>p</i> - value correct
6(c)	The sample means are approximately normally distributed large samples so CLT applies	E1	3.1a	Large samples, CLT

Question	Scheme	Marks	AO	Notes
6(d)	Patients did not deviate from diet			
	Same scales used			
	Sample variances can be used in place of unknown population variances (large samples)			
		E1	3.1a	Any sensible explanation
6(e)	H ₀ : $\mu_A - \mu_B = 4$ H ₁ : $\mu_A - \mu_B > 4$	B1	1.3	oe Both
	Test stat = $\frac{10.7 - 3.1 - (4)}{\sqrt{\left(\frac{9.6^2}{104} + \frac{7.0^2}{95}\right)}} = 3.040$	M1	1.3	7.6 - (4 - 0)
	Test stat $= 3.04$	A1	1.3	AWRT 3.04
	Critical value = 1.6449 OR <i>p</i> -value P(z > 3.04) = 0.00118	B1	1.3	Z > 3.04 implied by correct <i>p</i> -value
	(3.04 > 1.6449 or 0.00118 < 0.05) so reject H ₀	A1dep	2.1b	PI Dep on cv/ ts or <i>p</i> - value correct
	There is significant evidence that the mean weight loss of patients assigned to Diet A is at least 4kg more than that of patients assigned to Diet B. OR There is significant evidence the mean weight loss of patients assigned to Diet A is medically worthwhile	E1dep	2.1a	Conclusion correct and in context; test all correct Dep on cv/ ts or <i>p</i> - value correct

Question	Sch	eme	Marks	AO	Notes
6(e)	Alternative				
	H ₀ : $\mu_A - \mu_B = 4$ H ₁ : $\mu_A - \mu_B > 4$		(B1)		oe Both
	Test stat = $\frac{10.7-3}{\sqrt{\left(\frac{8.46^2}{104}+\right)^2}}$	$\frac{1-(4)}{\frac{8.46^2}{95}} = 2.99$	(M1)		7.6 - (4 - 0)
	Test stat = 2.99		(A1)		AWRT 3.0
	Critical value = 1. OR p -value ($z > 2$	653 .99) = 0.001395	(B1)		<i>z</i> > 2.99 implied by correct <i>p</i> -value
	(2.99 > 1.653 or 0 so reject H ₀	.001395 < 0.05)	(A1dep)		PI Dep on cv/ ts or <i>p</i> - value correct
	There is significant the mean weight 1 assigned to Diet A more than that of to Diet B. OR There is significant the mean weight 1 assigned to Diet A worthwhile	(E1dep)		Conclusion correct and in context; test all correct Dep on cv/ ts or <i>p</i> - value correct	
<u> </u>		Total	17		

Question	Scheme	M	arks	A	10		Notes		
7(a)	H ₀ : $\mu_A = \mu_B = \mu_C = \mu_D$ H ₁ : at least two of μ_A , are different]	B1		.1a	or 1- state	factor ANOVA d		
	T = 654.528 $\Sigma\Sigma x_{ij}^2 = 15508.274$	528 15508.274 $\Sigma x_{ij}^{2} - \frac{T^{2}}{n}$ = "15508.274" - $\frac{"654.528"^{2}}{29}$ = 735.622				1.3		Eithe	er
	$SS_{T} = \Sigma\Sigma x_{ij}^{2} - \frac{T^{2}}{n} = "155 - \frac{"652}{3} = 735$]	1.3 SS 7		otal
	$SS_B = \Sigma \frac{T_i^2}{n_i} - \frac{T^2}{n}$ $SS_B = \frac{190.078^2}{7} + \frac{18}{7} + \frac{133}{7} + \frac{146}{7} + \frac{146}{7} + \frac{146}{7} + \frac{1654}{7} + \frac{165}{7} + $	$\frac{\overline{T^{2}}}{n} + \frac{184.401^{2}}{8} + \frac{133.191^{2}}{6} + \frac{146.858^{2}}{8} - \frac{146.858^{2}}{29} = 291.742$			M 1	1.3		SS between tyre brands	
	$SS_E = 735.622-291.74$	42 = 44	43.880	Ν	11ft]	1.3		
	Source of variation	df	S	S	M	SS	I	Ratio	
	Between brands	3	291.74	2	97.2	247 5.		5.477	
	Error	Error 25 443.87 Total 28 735.62			17.7	55			
	Total								
					B1	1	1.3	df co	orrect
					M 1]	1.3	MS= betw error	SS/df for een brands and
	$F = \frac{97.247}{17.755} = 5.477$			1	A1]	1.3	AWI OR p	RT 5.5 $p = 0.0049$

Question	Scheme	Marks	AO	Notes
7(a) (cont)	cv: $F_{25}^3(0.05) = 2.991$ or $F_{25}^3(0.01) = 4.675$	B1	1.3	Either cv
	5.477 > cv so reject H ₀	M1	2.1b	or p=0.0049<0.05 or 0.01 PLUS correct conclusion
	There is significant evidence to suggest that at least two of the four mean lives of the tyre brands are different.	A1	2.1a	Conclusion in context condone statement that brands A and D differ

Question	Scheme	Marks	AO	Notes
7(b)	Possible comments			
	Scatter diagram			
	The scatter diagram is consistent with normality within tyre brands so there is no reason to doubt the validity of the test on this basis.			
	The scatter diagram appears to show similar spread (variances) for all tyre brands so there is no reason to doubt the validity of the test on this basis.			Condone brand B has a greater spread so not valid
		E1	3.1a	Either of these
	Data collection			
	The tyre sample should be a completely randomised design (CRD). There may be bias due to the opportunistic nature of Daniel's sampling method.			
	Larger samples would have enabled tests for normality and comparisons of variances within 'treatments'.			
		E1	3.1a	Either of these
		E1	3.1a	One extra comment from either category

Question	Scheme					Marks	AO	Notes
7(c)(i)	Treatmen brand A, B Blocking f rear wheels or Table whice rows/colum Front Wheels Rear Wheels	t factor 6, C, D Factor/v s ch coule nns rev A	varial d hav ersed Br B	iable – f ble – f d and C	- tyre Front or	B1	2.1a	Consideration of brands of tyre with front and rear wheels
	Measure th factor com	ne Tyre binatio	life for each n			B1	2.1a	oe combine both
7(c)(ii)	2-factor A	NOVA				B1	2.1a	Condone 2-way ANOVA
	Total			17				