

Mark Scheme (Results)

Summer 2019

Pearson Edexcel In GCE Statistics Paper 9ST0_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 9ST0_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE Statistics

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Paper 1 mark scheme

Question	Scheme	Marks	AO	Notes
1(a)	Example sampling method			
	Eva should look at the membership database/list.	E1	1.1	Defining their population as all members, or view a list
	She should produce queries to produce two lists, members aged 60 and over, and members aged under 60, using their dates of birth. or She should divide the list into members aged 60 and over, and members aged under 60.	E1	1.1	Clear division on age
	She should select 25 people from each list	E1	1.1	Clear attempt to get precisely 25 people in the \geq 60 category (must mention 60)
	by numbering each list and using a random number generator.	E1	1.1	Any sensible sampling method to select 25 people from a list.
1(b)	If 50 questionnaires are sent out, it is very unlikely that she will get 50 responses.	E1	3.1a	oe Likely responses < 50

Question	Scheme		Marks	AO	Notes
1(c)	Send out lots more questionnaires	e than 50	E1	3.1a	> 50 questionnaires
	and stop analys when Eva has 25 m those aged 60 and responses from the 60. or and choose 25 m each category usin process.	responses from over, and 25 ose aged under responses from	E1	3.1a	
	Alternative				
	Ask the chosen me complete the ques time they come in	tionnaire next	(E1)		
	and supervise the complete it.	nem as they	(E1)		Some measure to stop the questionnaire from being taken away.
		Total	7		

Question	Scheme	Marks	AO	Notes
2(a)	Dirk could have used a spreadsheet program.	E1	1.1	If mention database functions must mention query
2(b)	r = 0.967 (3 s.f.)	B1	1.2	awrt Actual: 0.967377
	There is a strong positive correlation between the number of human births and the number of domesticated chickens.	E1	2.1a	Must see strong and positive
2(c)	$D = 21\ 100 + 0.0872H\ (3\ s.f.)$	B1	1.2	awrt 21000 & 0.087 Actual: a = 21 061.829 b = 0.087244
		B1	1.2	Correct variables and form $D = a + bH$
	SC: Coefficients awrt -177 000 & 10	.7 scores E	B 1 B 0	
	The model would estimate the mean number of domesticated chickens for a country with no human births to be 21 100 [in 2014].	E1	2.1a	Condone omission of mean Condone 'we would expect' oe Condone a instead of 21100
	The model would estimate the mean number of domesticated chickens to increase by 0.0872 for each additional human birth [in 2014].	E1	2.1a	Condone omission of mean Condone 'we would expect' oe Condone b instead of 0.0872 FT their a & b, SC a
				& b reversed max E1

Question	Scheme		Marks	AO	Notes
2(d)	Possible explanat	tions			
	The model is bein extrapolate.	g used to			Any sensible mention of extrapolation oe
	The regression equestimate the mean chickens for count human births (not	number of tries with 399			Wrong type of regression equation for predicting a value.
	The model would many chickens for population.				
			E1	3.1a	
2(e)	Correlation does r causation.	not imply	E1	3.1b	oe
	It is likely that countries high population has birth rate and a high chickens for food.	ave both a higher gher population of	E1	3.1b	Connection to third variable, population. Implication that correlation is positive between all variables.
	Alternative				
	Sensible explanati the factors may in Done clearly in co	fluence the other	(E1) (E1)		
L	1	Total	10		1

Question	Scheme	Marks	AO	Notes	
3(a)(i)	[X = number of page views in a one-minute period]				
	$X \sim Po(2.8)$	M1	2.1a	Poisson distribution used PI	
	P(X = 2) = 0.238 (3 s.f.)	A1	1.2	awrt	
3(a)(ii)	[Y = number of page views in a five-minute period]				
	$Y \sim Po(14)$	M1	1.2	$\lambda = 14$ PI	
	P(Y > 20) = 0.0479 (3 s.f.)	A1	1.2	awrt 0.048	
	NOTE: 0.952 [$P(Y \le 20)$] or 0.0765 [$P(Y \ge 20)$] seen scores M1A0				

3(b)	Exponential method					
	[W = time between two consecutive page views (mins)]					
	$W \sim Exp(2.8)$	B1	2.1a	PI Alt: Time in secs & $W \sim Exp\left(\frac{7}{150}\right)$ awrt 0.0467		
	2: 25 = $2\frac{5}{12} = \frac{29}{12} = 2.417$ (4 s.f.) mins	B1	1.2	Conversion from m:ss to minutes Alt: 145 secs		
	$P\left(W > \frac{29}{12}\right) = e^{-2.8 \times \frac{29}{12}}$	M1	1.2	PI Use of exponential cdf formula Alt: $P(W > 145) = e^{-\frac{7}{150} \times 145}$		
	= 0.001152 (3 s.f.)	A1	1.2	$= 1.52 \times 10^{-3}$ awfw 0.001150~0.001154		
	NOTE: $P(W > 2.25) = e^{-2.8 \times 2.25} = 0.0018(363)$ scores B1B0M1A0					

Question	Scheme	Marks	AO	Notes
3(b) continued	Poisson method 2: 25 = $2\frac{5}{12} = \frac{29}{12} = 2.417$ (4 s.f.) mins	(B1)		Conversion from m:ss to minutes Alt: 145 secs
	[V = number of page views in a 2.417 minute (145 second) period]			
	$V \sim Po\left(2.8 \times \frac{29}{12}\right) = Po\left(\frac{174}{25}\right)$ $= Po(6.96)$	(B1ft)		Using their time in mins/secs PI
	$P(V=0) = e^{-6.96} \frac{(6.96)^0}{0!}$	(M1)		Use of Poisson pdf formula PI
	= 0.00152 (3 s.f.)	A1	1.2	$= 1.52 \times 10^{-3}$ awfw 0.00150~0.00154
	NOTE: $2\frac{1}{4} \times 2.8 = 6.3, P(V = 0) =$	0.0018(3	363) sco	res B1B0M1A0

Question	Scheme	Marks	AO	Notes
3(c)	It does not support Rhodri's suspicion.	E1	2.1b	
	We would expect a pause that long by chance regularly.	E1	2.1a	
	Less than 1 in 1000 (1 in 868) pauses would be of this length on average, and we would expect several thousand (4032) pauses each day. or We would expect 4.65 pauses of this length every day, on average. or We would expect a pause of this length every 5:10 (or 5.17) hours, on average.	E1	2.1b	Any sound numerical reasoning to back up the argument. Probabilities & figures may be approximate FT calculations using their answer to part (b)
	SC: 'It does support Rhodri's suspici scores E1E1E0	on as the p	probabilit	ry is so low'
3(d)	The data is showing a weekly seasonality.	E1	2.1b	oe (e.g. trends, oscillates, dips)
	This may be because fewer people are studying at the weekend, and so will be less likely to be looking for maths articles.	E1	2.1a	Any sensible explanation. Must be in context.
3(e)	The data is showing short-term variation. or There are fewer page views in the summer months.	E1	2.1b	oe Accept 'annual seasonality'.
	This may be because fewer people are studying in summer, as it lies between academic years, and so will be less likely to be looking for maths articles.	E1	2.1a	Any sensible explanation. Must be in context.

Question	Scheme	Marks	AO	Notes
3(f)	Possible explanations			
	There may have been a recording error in the data.			
	A MOOC may have run where students were asked to look at the website.			
	A bot may have repeatedly accessed the website on one day.			
	Page may be trending on Wikipedia frontpage			
	Poisson distribution may have been mentioned in a news article			
	Lots of people learning about it at school/university			
		E1, E1	2.1a, 2.1a	E1 for each sensible explanation (max E2)
3 (g)	Possible reasons			
	The data clearly trends (weekly and annually), so the rate will not be constant.			
	The mean rate may not be accurate, as the outlier described in (c)(iii) may be inflating its value.			
	Page views may not be independent, as one person may suggest another person visit the website.			Or e.g. peak in Jan shows not indep
		E1, E1	3.1a, 3.1a	E1 for each reason (max E2)
	Total	19		

Question	Scheme	Marks	AO	Notes
4	Example experiment			
	Kayoko should select a large sample of students.			Large (30+) Accept simple random Accept sensible stratification, provided no hint of disproportionality
	The students should be blocked by GCSE maths grade.			Relevant blocking Examples • Level of education • Sex • Age • Subject
	Half given caffeine and one half not given caffeine.			Control group Alt: Levels of treatment, but must include control group
	The subjects should each be tested with a mental arithmetic test before the treatment.			Test before treatment (as well as after) or a matched pairs experiment where similar students are compared
	Tests of equivalent difficulty or same test given to control group and main group or 2 nd test if paired			
	The subjects should each be given an identical-looking soft drink, which may or may not contain caffeine.			 Blind or double-blind Alt examples: Coffee and decaf coffee Caffeine and placebo tablet
	Wait for caffeine to take effect or for it to run out			

	E1, E1, E1, E1, E1	1.1	1 mark per reason
Total	5		

Question	Scheme	Marks	AO	Notes
5(a)	Run a query with a join between the Car_ID fields in the two tables.	E1	1.1	'query' seen
		E1	1.1	'join' seen Condone 'link'
		E1	1.1	Description that the join should go between the two Car_ID fields
	Alternative 1			
	Transfer tables to a spreadsheet program	(E1)		
	and write a macro to check for each Car_ID in both tables (and produce a new table with combined data).			Or any viable alternative.
	or and manually check for each Car_ID in both tables (and copy and paste to make a new table with combined data).	(E1)		NOTE: Alternative solutions score E2 max
	Alternative 2			
	Any other method that would work	(E1)		e.g. entering all data manually into the database
5(b)(i)	The data is not symmetric.			
	or The right-hand tail is longer than the left-hand tail.	E1	2.1b	oe
5(b)(ii)	The data is roughly bell-shaped.	E1	2.1b	oe

Question	Scheme	Marks	AO	Notes
5(c)	$[C = \text{Maintenance costs for a car}$ $C \sim N(511.36, 168.65^2)$ $V = \text{Maintenance costs for a van}$ $V \sim N(885.12, 232.78^2)$]			
	$X = \sum_{i=1}^{10} C_i + \sum_{i=1}^{4} V_i$	B1	1.2	or <i>C</i> + <i>C</i> + + <i>V</i> + <i>V</i> PI Condone 10 <i>C</i> + 4 <i>V</i>
	$\mu = 10 \times 511.36 + 4 \times 785.12$ = 8654 (0 d.p.)	B1	1.2	awrt
	$\sigma = \frac{1}{\sqrt{10 \times 168.65^2 + 4 \times 192.78^2}}$	M1	1.2	Attempt to find σ or σ^2
	= 708 (0 d.p.)	A1	1.2	$\sigma = awrt 708$ or $\sigma^2 = awrt 501 000$
	So $X \sim N(8654,708^2)$	M1	1.2	Total costs normally distributed with their μ and σ above PI
	P(X > 10000) = 0.0286 (3 s.f.)	A1	1.2	awfw 0.028~0.029
	Note: 0.242 implies B1B1M1M1			

Question	Scheme		Marks	AO	Notes
5(d)	Possible reasons				
	The cars and vans new, so they will sample.				
	Some of the cars a same model, so th random sample.	•			
	Inflation is likely maintenance costs 2018.				
	Maintenance costs unusually high/low the new branch.	•			
	Different brands of cars/vans may have different repaid costs				
	Figures may not h recorded reliably.	ave been			
			E1, E1	3.1a, 3.1a	E1 for each reason (Max E2)
		Total	13		

Question	Scheme	Marks	AO	Notes		
6	[D = The coin is a double-header]					
	H = Three heads on coin tosses]					
	$\frac{1}{10}$ D	$\frac{1}{10}$ D (1) H				
	$\frac{9}{10} D'$	($\frac{1}{8}$	- H		
	$\overline{10} \searrow D'$		$\frac{7}{8}$	∽ <i>H′</i>		
	$P(D) = \frac{1}{10}$	B 1	1.2	PI		
	P(H D) = 1	B1	1.2	Ы		
	$P(H D') = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$	B1	1.2	PI		
	Using Bayes' theorem (or from tree diagram),					
	$P(D H) = \frac{1 \times \frac{1}{10}}{1 \times \frac{1}{10} + \frac{1}{8} \times \frac{9}{10}} = \frac{\frac{1}{10}}{\frac{1}{10} + \frac{9}{80}}$	M1	1.2	Clear attempt at Bayes' theorem PI		
	$=\frac{8}{17}=0.471$ (to 3 s.f.)	A1	1.2	awrt		
	Total	5				

Question	Scheme	Marks	AO	Notes
7(a)	Number of correct cards			
	$X \sim B\left(1850, \frac{1}{5}\right)$			
	Approximate to $Y \sim N(370,296)$	B1	2.1b	Normal approx. stated or clearly used
		B1	1.2	Mean = 370 cao
		B1	1.2	Variance = 296 cao or SD = awrt 17.2
	$P(X \ge 558) \approx P(Y > 557.5)$	M1	1.2	PI Use of 557.5 (or 558) Alt z = awrt 10.9
	$= 5.88 \times 10^{-28}$	A1	1.2	Actual: 5.87695 × 10 ⁻²⁸ (awrt 5.9)
				no continuity correction:
				4.27×10^{-28}
				(awrt 4.3)
				Binomial prob : Scores max of M1A1 for 2.19×10^{-25}
	D			(awrt 2.2)
7(b)	Dice It is approximately	E1	2.1b	Indication that the probability is not exact.Accept 'more than' or 'less than'
	the probability of rolling a die 31 times and getting a six every time. or	B1	1.2	 30~32 seen Number on die specified

	the probability of rolling 31 dice and all land on a six.	E1	2.1b	Alt: If single die used, accept 'correct guesses' oe Alt: 31~33 dice with all landing on 'same number' Clear implication that the die is only rolled 30~32 times (or only 30~32 dice are rolled) e.g. '31 sixes in a row' scores E0
	Lottery			
	It is less likely	(E1)		or 'lower probability' oe
				Three draws specifically.
	than winning the Lotto jackpot from a single play on each of three specific draws.	(B1)		$\left(\frac{1}{14000000}\right)^3 = 3.64 \times 10^{-22}$
				Do not accept 'winning three times in one draw' oe
				• 'single play' or 'single set of numbers' specified
				e.g. 'winning on three Lotto draws' scores E0
		(E1)		• Draws must be specific , not general
				e.g. 'winning three draws in a row' scores E0
7(c)	I disagree with the psychologist's conclusion	E1	3.1b	

Possible reasonsas Hubert Pearcsupervised, and socheatedas the experimentunder properly corconditions.	he could have nt was not run	E1	3.1a	Correct criticism of the experiment
Alternative I agree with the ps probability of this chance is so tiny.		(E1)		This solution scores E1 only
	Total	10		

Question	Scheme	Marks	AO	Notes
8(a)(i)	7: 8: 00 00	M1	1.1	Rectangular distribution diagram with (a least one) train journey clearly indicated or 4 trains between 7:00 and 8:00 or $\frac{n \times 5}{60}$ or 20 (mins) seen
	$\frac{4\times5}{60} = \frac{1}{3}$	A1*	1.2	oe Must be convinced. No gaps in argument for full marks.
8(a)(ii)	7: 8: 00 00	M1	1.1	Rectangular distribution diagram with single block clearly indicated
	$\frac{38}{60} = \frac{19}{30} = 0.633 \ (3 \text{ s.f.})$	A1	1.2	awrt
	Alternative			
	$4 \times 10 = 40$ mins			
	-2 mins overlap	(M1)		Clear indication that overlap has been considered or 37/38 (mins) seen.
	$\frac{38}{60} = \frac{19}{30} = 0.633 \ (3 \text{ s.f.})$	(A1)		Awrt
8(b)	[Let X = Number of days the passenger has to wait for less than 5 minutes]			

	$X \sim B\left(5, \frac{1}{3}\right)$ $P(X \ge 2) = \frac{131}{243} = 0.539 \ (3 \text{ s.f.})$	M1ft A1	2.1a	or $X \sim B\left(5, \frac{2}{3}\right)$ if X defined using 'more than 5 minutes' ft their <i>p</i> in (a)(i) awrt
8(a)	243			РІ
8(c)	The masses converte loss they 10			Note: This mark may
	The passenger waits less than 10 minutes if arriving duringM7:15-7:53	M1ft	1.2	be awarded if seen in (a)(ii)
				Ft their times from (a)(ii)
				PI
	$P(15 \le T \le 53)$	M1	1.2	Accept clearly labelled diagram with correct shaded region.
	= 0.922 (3 s.f.)	A1	1.2	awfw 0.922~0.925
	Note: True probability ≈ 0.924			'
	It is anticipated that candidates will discard other time periods due to being outside $\mu \pm 3\sigma$			

8(d)	Possible assumpt	tions			
	Comment on valid	dity			
	The trains are al	l on time			
	This is unlikely to of trains are late in				or this is likely to be valid as most trains are on time
	There is only one from Godalming				
	Validity would de of the railway line				or this is valid as Godalming only has a single line through it.
			E 1	2.1 a	Correct assumption
			E1dep	3.1a	Relevant comment on validity.
					Dep on previous E1
		Total	11		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom