

AS Statistics

SS1B Mark scheme

6380 June 2016

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk.

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
$\sqrt{10}$ or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for SS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- GN3 In general, a correct answer (to accuracy required) without units scores full marks
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3})

Q	Solution	Marks	Total	Comments	
1 (a)	r = 0.608 = 0.6 to 0.62 = 0.5 to 0.7	B3 (B2) (B1)		AWRT (0.60810) AWFW AWFW	
	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ & $\sum xy$ or Attempt at $S_{xx} S_{yy}$ & S_{xy}	(M1)		20.25 41.0455 11.30 12.7862 & 22.8983 (all 5 attempted) 0.03925 0.0172 & 0.0158 (all 3 attempted)	
	Attempt at substitution into correct corresponding formula for r r = 0.608	(m1) (A1)	3	AWRT	
(b)					
	Some/moderate positive (linear) correlation/ relationship/association	Bdep1		Dependent on $0.5 \le r \le 0.7$ Must qualify strength and state positive	
Notes	 Only accept phrase stated; ignore additional comments unless contradictory Any mention of "strong or weak" ⇒ Bdep0 Use of: "quite/fairly/relatively/reasonably moderate" ⇒ Bdep0 Use of: "high or big or good or low or small or poor or medium or average" ⇒ Bdep0 				
	between				
	trunk and tail lengths of male African elephants	B1	2	Context; providing $-1 < r < 1$	
Notes	1 "As trunk lengths of elephants increase so do tail lengths" (OE) Bdep0 B1				
	2 AS tunks/A nerease so to rengins/y (OL) Duepo Do	Total	5		

Q	Solution	Marks	Total	Comments	
2 (a)					
	Mean = 48.1	B1		CAO $(\sum x = 481)$	
	Var(n) = 3.31			AWRT (3.312)	
	or $Var(n-1) = 3.68$	B2		($\sum x^2 = 23169.22$) CAO (3.680)	
	or				
	Var(n) or $Var(n-1) = 3.1$ to 3.9	(B1)	3	AWFW	
Notes	1 Value of variance stated as 1.81^2 to 1.93^2 and not evaluated $\Rightarrow B1$ 2 Value of variance or standard deviation stated as 1.81 to $1.93 \Rightarrow B0$ 3 If, and only if, B0 B0, then award M1 for seen attempt at (480 to 482) ÷ 10				
(b)	Mean = (their mean) $\times 0.354$	M1		Can be implied by a correct answer	
	= <u>16.9 to 17.1</u>	A1		AWFW (17.0274)	
	Var(n) or Var(n-1) = $(3.1 \text{ to } 3.9) \times 0.354^2$	M1		Can be implied by a correct answer	
	= <u>0.415 to 0.416</u> or <u>0.461 to 0.462</u>	A1		AWFW (0.41505 or 0.46116)	
Notes	1 New Sd = $(1.8199 \text{ to } 1.9183) \times 0.354 = (0.644 \text{ to } 0.680)$ 2 New Var = $[(1.8199 \text{ to } 1.9183) \times 0.354]^2 = (0.644 \text{ to } 0.33 Jf no marks scored then seen multiplication of data values.$	$) \Rightarrow M0$ $(680)^2 \Rightarrow 1$ by 0.354	$\begin{array}{c} 4 \\ M1 \\ \hline \end{array} M1 \text{ or } \end{array}$,	
	5 If no marks scored, then seen multiplication of data values	0y 0.334 -		/	
		Total	7		

Q	Solution	Marks	Total	Comments
3	Accept the equivalent percentage answers with %-sign (s	ee GN5)		
(a)(i)	$P(X < 960) = P\left(Z < \frac{960 - 955}{5}\right)$	M1		Standardising 960 with 955 and 5; allow (955 – 960)
	= P(Z < 1) = 0.841	A1	(2)	AWRT (0.84134)
(ii)	P(X > 946) = P(Z > -1.8) = P(Z < 1.8)	B1		CAO; ignore sign
	= <u>0.964</u>	B1	(2)	AWRT (0.96407)
(iii)	P(X = 950) = <u>0 or zero or nought or nothing or nil</u>	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 0.00) Ignore additional words providing they are not contradictory (eg impossible so = 0)
(iv)	P(946 < X < 960) = P(-1.8 < Z < 1) = (i) - (1 - (ii)) or (i) + (ii) - 1 or 0.841 - (1 - 0.964) or 0.841 + 0.964 - 1 = <u>0.8 to 0.81</u>	M1 A1	(2)	OE; providing 0 < answer < 1 Can be implied by a correct answer AWRT AWFW (0.80541)
			-	
	Part (a)	Total	7	

Q	Solution	Marks	Total	Comments
3	Continued			
	Part (a)	Total	7	
(b) (i)	P(10 bottles > 946) =			
	[(a)(ii)] ¹⁰ or (0.964) ¹⁰	M1		Providing 0 < (a)(ii) < 1
	= <u>0.693 to 0.694</u>	A1	(2)	AWFW (0.69356)
(ii)	$\mathbf{V}(\bar{X}) = \frac{5^{2}}{10} \text{ or } \frac{25}{10} \text{ or } \underline{2.5}$ OR $\mathbf{Sd}(\bar{B}) = \frac{5}{\sqrt{10}} \text{ or } \frac{\sqrt{10}}{2} \text{ or } \sqrt{\frac{5}{2}} \text{ or } \underline{1.58}$ $P(\bar{X} < 952.5) = P\left(Z < \frac{952.5 - 955}{\sqrt{2.5}}\right)$ $= P(Z < -\sqrt{2.5}) = 1 - P(Z < 1.58)$ $= \underline{0.056 \text{ to } 0.058}$	B1 M1 m1 A1	(4)	CAO Can be implied by what follows CAO/AWRT (1.58114) Standardising 952.5 with 955 and $\sqrt{2.5}$ (OE); allow (955 – 952.5) Can be implied only providing M1 scored and answer < 0.5 AWFW (0.056923)
			6	
Notes	1 In (ii), award of B0 \Rightarrow 0/4 marks 2 Use of distribution of total in (ii): B1 for Sd = $5\sqrt{10}$ (OE); M1 for P(Z < (9525 - 9550)/(5) A1 for 0.056 to 0.058 (AWFW)	5√10)) or F	$P(Z < -\sqrt{2.5})$; m1 for $1 - P(Z < 1.58)$
		Total	13	

Q	Solution	Marks	Total	Comments
4 (a)	Accept the equivalent percentage answers with %-sign (s	ee GN5)		
(i)	$P(CW) = \frac{110/400 = 55/200 = 11/40 = 0.275}{110/400 = 55/200 = 11/40 = 0.275}$	B1	(1)	CAO; either of four listed answers
(ii)	$P(SW \cap H) = \frac{56/400 = 28/200 = 14/100 = 7/50 = 0.14}{100 = 7/50 = 0.14}$	B1	(1)	CAO; any one of five listed answers
(iii)	$P(B \cap (H \cup C)) = \frac{30 + 24 + 24 + 26}{400} = \frac{104}{400} = \frac{104}{400}$	M1		Numerator CAO
	$\underline{104/400} = 52/200 = 26/100 = 13/50 = 0.26$	A1	(2)	CAO; any one of five listed answers
(iv)	$P(SW C) = \frac{45/400}{120/400} \text{ or } \frac{45}{120} =$	M1		Fraction CAO
	$\frac{45/120 = 15/40 = 9/24 = 3/8 = 0.375}{2}$	A1	(2)	CAO; any one of four listed answers
(v)	$P((E \cup C) W) = \frac{(32+17+21+14)/400}{(150+110)/400} \text{ or } \frac{84}{260} = \frac{42}{21}$	M1 M1		Numerator CAO Denominator CAO
	$\frac{42}{130} \text{ or } \frac{21}{65} = \frac{42/130 = 21/65 = 0.323}{42/130 = 21/65 = 0.323}$	(M2) A1	(3)	CAO/AWRT (0.32308)
			9	
(D)	$P(W \cap C) = \frac{45 + 25}{400} \text{ or } \frac{70}{400} $ (p ₁)	B1		CAO; $OE\left(\frac{7}{40}, 0.175\right)$ Seen anywhere, even in an incorrect expression
	$P(B \cap H) = \frac{30+24}{400} \text{ or } \frac{54}{400} $ (p_2)	B1		CAO; $OE\left(\frac{27}{200}, 0.135\right)$ Seen anywhere, even in an incorrect expression
	$Prob = (p_1)^2 \times (p_2)^2$	M1		Providing $0 < p_1, p_2 < 1$ $(p_1 \times p_2 \times p_3 \times p_4) \implies M0$
	$\times \begin{pmatrix} 4\\2 \end{pmatrix}$ or 6	m1		
	= 0.00334 to 0.00335	A1	5	AWFW (0.0033488)
SCs	1 Answer of 0.00056 (AWRT) without working \Rightarrow B1 B1 M1 m0 A02 Answer of 0.02362 to 0.02363 (AWFW) without working \Rightarrow B1 B1 M0 m0 A03 In each of the following (incorrect) expressions, ($\otimes \Rightarrow \times $ or +) and ignore the value of n :			
	$\left(\frac{70}{400} \otimes \frac{69}{400} \otimes \frac{54}{400} \otimes \frac{53}{400}\right) \times n \implies B1 B1 \text{ and } \left(\frac{70}{400} \otimes \frac{69}{399} \otimes \frac{54}{398} \otimes \frac{53}{397}\right) \times n \implies B1$			
		m · -		
		Total	14	

Q	Solution	Marks	Total	Comments
5(a)				
(i)	$b \text{ (gradient/slope)} = \frac{0.372 \text{ to } 0.373}{0.372 \text{ to } 0.373}$	B2		AWFW (0.37235)
	b (gradient/slope) = <u>0.3 to 0.4</u>	(B1)		AWFW
	a (intercept) = 6.94 to 6.95	B2		AWFW (6.94648)
	$a (intercept) = \frac{6}{6} to 9$	(B1)		AWFW
	Attempt at $\sum u \sum v^2 \sum u + k \sum vu$			324 8922.70 204 & 5573.05
	Attempt at $\sum x \sum x \sum y \propto \sum xy$	(M1)		(all 4 attempted) $\left(\sum y^2 = 3493.64\right)$
	Attempt at S_{yy} & S_{yy}	()		174.70 & 65.05
	Attempt at substitution into correct corresponding formula			(both attempted) $(S_{yy} = 25.64)$
	for b	(m1)		
	b = 0.372 to 0.373 $a = 6.94 to 6.95$	(A1 A1)		AWFW $(\overline{x} = 27 \& \overline{y} = 17)$
			4	
Notes	1 Written form of equation is not required	<u> </u>	04. 605	(0.272 0.272)
	2 Award 4 marks for $y = (6.94 \text{ to } 6.95) + (0.372 \text{ to } 0.373)$ 3 Values of a and b interchanged and equation $y = ax + b$	x or for (6 stated or	.94 to 6.95) used in (h)	+ $(0.3/2 \text{ to } 0.3/3)x$ or (c) $\rightarrow \max \text{ of } 4 \text{ marks}$
	4 Values of a and b interchanged and equation $y = ax + by$	stated or	used in (b)	$\& (c) \Rightarrow 0 \text{ marks}$
	5 Values are not identified, then \Rightarrow B0 B0			
	6 Some/all of marks can be scored in (a)(ii), (a)(iii), (b) & (c)	(i), even if s	some/all of	marks are lost in (a)(i), but marks lost in (a)(i)
(ii)	cannot be recouped by subsequent working in (a)(ii), (a)(i	11), (b) or (c	(1) but see	e Note 3
(11)	Fach/every/one_degree (°C) rise			
	in ground temperature results in	B1		
	or increase per degree (°C) is			
	(on average) b vibrations per second	BF1		F on b providing $0.3 \le b \le 0.4$
			2	
Notes	1 To score any marks, an explanation must indicate change in	n x affectin	g change in	y, not change in y affecting change in x
	2 Accept, for example, 10°C and 10 <i>b</i> vibrations 3 Reference only to correlation \rightarrow B0 BE0			
SC	1 As <i>x</i> /temperature increases (by <i>c</i>) then <i>y</i> /vibrations increases	ases by b (C	DE; value o	f b (0.3 \leq b \leq 0.4) must be stated but context
20	and/or units are not required) \Rightarrow B1	•		· · ·
(iii)				
	<u>Given:</u>			
	When temperature/ $x < 15$ °C or = 0 °C	B1		Must be stated clearly
	value of $\underline{y} = \underline{0}$			
	Equation:			
	When temperature/x = 0 °C			AWFW
	vibrations/value of $y = 6$ to 9	BF1		F on <i>a</i> providing $6 \le a \le 9$
			2	· · · ·
Notes	1 B1 is for a clear statement of information given in the qu	lestion in te	rms of temp	perature/x and y
	2 BF1 is for a clear statement of the value of vibrations/y	shown by th	e equation v	when temperature/ $x = 0$
		Total	0	
	Part(a)	Total	ð	

Q	Solution	Marks	Total	Comments
5	Continued			
	Part (a)	Total	8	
(b)	y(23) = 15.4 to 15.6	B1	1	AWFW (15.51059)
Note	1 Ignore any method shown			
(c) (i)	$res(28.6) = 17.0 - a - b \times 28.6$ = <u>-0.55 to -0.65</u> = <u>0.5 to 0.7</u>	B2 (B1)	2	AWFW; do not ignore sign (–0.59576) AWFW; ignore sign
Note	1 If, and only if, B0, then attempted use of $\pm(17.0 - a -$	$b \times 28.6) =$	⇒ M1 pro	viding $0.3 \le b \le 0.4$ and $6 \le a \le 9$
(ii)	Value will be/is always: <u>0 or zero or nought or nothing or nil</u>	B1	1	CAO; accept nothing else, but ignore zeros after decimal point (eg 0.00) Ignore any explanation
		Total	12	

Q	Solution	Marks	Total	Comments
6	Accept 3 dp rounding of probabilities from tables	Accept t	he equivale	ent percentage answers with %-sign (see GN5)
(a)	Use of B(30, 0.28) or B(30, 0.45) (30)	M1		Indicated by an expression or by any one correct probability in (a) or (b) Correct expression
	$P(Vans = 3) = {\binom{30}{3}} (0.28)^3 (1 - 0.28)^{30-3}$ = 4060 × 0.021952 × 0.000140597	M1		Can be implied by a correct answer Ignore additional expressions
	= <u>0.012 to 0.013</u>	A1	3	AWFW (0.01253)
(b)	P(Cars < 15) = 0.644 to 0.645 or 0.769	M1		AWFW or AWRT
	= <u>0.644 to 0.645</u>	A1	2	AWFW (0.6448)
Note	1 For calculation of individual terms or no method: award	B2 for 0.6	44 to 0.645	(AWFW); B1 for 0.769 to 0.77 (AWFW)
(c)	$P(Van \text{ or } HGV) = \underline{0.4}$	B1		CAO; stated or identified from below
	P(Vans or HGVs ≥ 10) = 1 - 0.1763 = 0.823 to 0.824	M1 A1		AWFW (0.8237)
	= 1 - 0.2915 or 0.708 to 0.709	(M1)	3	
Note	1 For calculation of individual terms or no method: award	B3 for 0.8	23 to 0.824	(AWFW); B2 for 0.708 to 0.709 (AWFW)
(d)				
Note	$P(20 < M' \le 25) = P(M' \le 25) - P((M' \le 20); \text{ but } p = 0.85)$ or $P(M' > 20) = P(M < 10) \text{ and } P(M' \le 25) = P(M \ge 5)$ so P(20 < M' < 25) = P(5 < M < 10) = P(M < 9) - P(M < 4);	is not table and $p = 0$.	ed so must u	or may use calculator
	Using $p = 0.15$ gives Using $p = 0.85$ gives	B1		Either CAO Stated or identified from below
	0.9903 or 0.9971 (<i>p</i> ₁) 0.4755 or 0.2894 MINUS	M1		
	0.5245 or 0.7106 (p_2) 0.0097 or 0.0029	M1		
	= <u>0.464 to 0.466</u>	A1	4	AWFW (0.4658)
Notes	1 For calculation of individual terms or no method: award B3 for 0.279 to 0.281 (AWFW); B3 for 0.286 to 0.287 (2 $(1-p_2) - (1-p_1) \Rightarrow$ (B1) M1 M1 A1 or (B1) M1 M1 3 Answer of $1-0.4658 = 0.534$ to $0.536 \Rightarrow$ B1 M1 M1	B4 for 0.4 (AWFW) or (B1) M A0 or B3	64 to 0.466 1	(AWFW); B3 for 0.472 to 0.473 (AWFW);
		Total	12	

Q	Solution	Marks	Total	Comments
7(a)				
(i)	$\overline{x} = 12240/30$ = <u>408</u>	B1		CAO
	$s^2 = 3972/29 = 137$ $s = 11.7$	B1		AWRT (136.9655 & 11.70323) Ignore any notation
	$\sigma^2 = 3972/30 = 132$ $\sigma = 11.5$			AWRT (132.4 & 11.50652)
	98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$ CL for μ is	B1		AWFW (2.3263)
	$408 \pm \begin{pmatrix} 2.32 \text{ to } 2.33 \\ 2.05 \text{ to } 2.06 \\ 2.45 \text{ to } 2.47 \\ 2.14 \text{ to } 2.16 \end{pmatrix} \times \frac{(\sqrt{137} \text{ or } 11.7 \text{ or } \sqrt{132} \text{ or } 11.5)}{\sqrt{30} \text{ or } 29}$	M2,1 (-1 ee)		Ignore any notation M0 if CI is not of the form: $C \pm (z \text{ or } t) \times (D/\sqrt{30 \text{ or } 29});$ allow any combination in last term
	Hence (z) 408 ± 5			CAO/AWRT (4.95 to 5.28)
	or	Adep1		Dependent on award of M2
	<u>(403, 413)</u>		6	AWRT
Note	1 If award of M0 is followed by a numerically correct CI =	\Rightarrow possibly	2 solutions	
(ii)	0.5% 'above 400' or 'of 400' \Rightarrow <u>402 or 2</u>	B1		CAO
	Clear correct comparison of 402 with CI {eg 402 < CI or 402 < LCL}	BF1		Statement must include reference to 402 F on CI providing it is above 402 Must have found an interval in (a)(i) but quoting values for CI or CLs is not required
	Sample meets requirement or Yes	Bdep1	3	Dependent on BF1
Notes	1 Statement must clearly indicate that " 402 is below the CI 2 Statements of the form "402 is within 98% of the data/va 3 Comparison of 402 with 408 or comparison of 402 w 4 Use of 420 (5%) or 600 (50%) \Rightarrow B0 BF0 Bdep0	" OE llues/loaves/ ith CI whic	/weights/gra h includes 4	$ms" \Rightarrow B1 BF0 Bdep0$ $02 \Rightarrow B1 BF0 Bdep0$
(b)	Number $< 388 = \underline{4}$ which is greater than $\underline{3}$ or Percent $< 388 = \underline{13}$ which is greater than $\underline{10}$	B1		Requires 4 & 3 Requires 13(AWRT) & 10
	Sample does not meet requirement	BF1	2	Dependent on B1
(c)	CLT used in			
	part (a)(i) or first part or construction of CI	B1		"First question" \Rightarrow B0 Ignore additional words providing they are not contradictory
			1	
			12	