Version 1.0

General Certificate of Education (A-level) June 2013

Statistics

SS04

(Specification 6380)

Statistics 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	Sample proportion = $\frac{1029}{2450} = 0.42$	B1		Either form
	$z = (\pm)2.5758$	B1		2.57 ~ 2.58
	Use of $\frac{(0.42)(0.58)}{2450}$ (= 0.00009943)	M1		
	99%CI: $0.42 \pm 2.5758 \sqrt{\frac{(0.42)(0.58)}{2450}}$	M1		Their proportion, <i>z</i> and variance (M's are independent)
	$= 0.42 \pm 0.0257$ or (0.394, 0.446)	A1	5	Either form. 0.42±(0.0256~0.026) Or AWRT (0.394, 0.446)
	Alternative (using numbers) Final CI symmetrical about 0.42 $z = (\pm)2.5758$	(B1) (B1)		
	Use of $2450 \times 0.42 \times 0.58$ (= 596.82)	(M1)		
	$1029 \pm (\text{Their } z) \times \sqrt{\text{Their } \sigma^2}$	(M1)		1029 ± 62.9 or (966.1,1091.9)
	Answer as above	(A1)	5	
(b)	Readers of newspaper likely to have similar backgrounds/opinions Self-selected phone-in	E1E1	2	For any two essentially different reasons
	Total		7	

Q	Solution	Marks	Total	Comments
2(a)	$H_0: \lambda = 27$ $H_1: \lambda \neq 27$	B1		For both (allow μ)
	Use of Normal	M1		
	$z = \frac{34.5 - 27}{\sqrt{27}} = 1.44 (1.4434)$	M1		Ignore signs, unless inconsistent For $\frac{(34.5 \text{ or } 35 \text{ or } 35.5) - 27}{\text{Their SD}}$
	OR $z = \frac{35 - 27}{\sqrt{27}} = 1.54$ (1.5396)	A1dep		AWRT 1.44 from use of 34.5 or AWRT 1.54 from use of 35
	10% critical value = 1.6449 Do not reject H ₀ at the 10% level	B1 Adep1		1.64 ~ 1.65 Requires accept H_0 , previous A1 and comparison with a <i>z</i> value
	No evidence that the mean is different during January	AF1	7	ft conclusion from their calculated z compared with their critical z in context.
				Alternatives
				p = 0.0745 (from use of 34.5) or $p = 0.0618$ (from use of 35) for M1 A1dep. Compared to 0.05 for B1. Then A1dep AF1 as before
				May also use 90% intervals
(b)	Type II error	Bdep F1		Correct error type their conclusion
	We accepted H_0 when it could be false	Bdep F1	2	Correct interpretation their error type (dependent). Requires reference to H_0 .
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)(i)	$\overline{x} = 95.625$	B1		95 ~ 96
	s = 9.1798	B1		9.1 ~ 9.2 or 8.5 ~ 8.7
	Use of $t_7 = 2.365$	B1		For 7df either here or in part (b)(i). (May
				be implied)
		B1		For $t = (2.36 \sim 2.37)$
	95% CI: $95.625 \pm 2.365 \times 9.1798$			Their \overline{x}, s, t .
	95%CI: 95.625 ± 2.365 × $\frac{9.1798}{\sqrt{8}}$	M1		S_{n-1} S_n
				Needs $\frac{s_{n-1}}{\sqrt{8}}$ or $\frac{s_n}{\sqrt{7}}$
	$=95.625 \pm 7.67 \mathrm{or} 7.68$			Depends on rounding. Need not be seen
	= (87.9, 103.3) or $(88.0, 103.3)$	A1	6	cao and cwo
	- (07.9, 103.3) 01 (00.0, 103.3)		0	Note: 88.0 results from using
				t = 2.3646 from a calculator
(ii)	92 is within the interval	Bdep		Correct conclusion and reason for their
()	· · · · · · · · · · · · · · · · · · ·	F1		CI.
	So mean time has <i>not</i> changed	Bdep	2	
	č	F1	2	
(b)(i)	$H_0: \mu \neq 92$	B1		Both
	$H_1: \mu \neq 92$			
				4.2
	$t = \frac{94.5 - 92}{4.2/\sqrt{8}}$	M1		M1 for use of $\frac{4.2}{\sqrt{8}}$
	4.2/ \sqrt{8}			V 0
		m1		Correct formula, ignore sign for m1.
	1.40			Condone " $z =$ ". Alternatively may use CI
	= 1.68	A1		1.68 ~ 1.69
		DE1		or 94.5 ± 3.51 or $(9.0, 98.0)$
	Critical value $t_7 = (\pm)2.365$	BF1		For use of same <i>t</i> -value as in part (a)(i) or $p = 0.136$ (AWFW 0.1345 to 0.137)
				Note: $p = 0.092 \sim 0.093$ is a normal prob
				for BF0 AF0 E0
	Cannot reject H_0 at 5% level	AF1		ft their <i>t</i> and critical t with consistent sign
	Cumot reject 110 at 570 level	711 1		OR ft their <i>p</i> -value and 0.05. Requires M
				and m1.
	No evidence that mean task time has			All correct including conclusion in
	changed from 92 seconds	E1	7	context
	-			
(ii)	Use z-test/normal distribution/normal			Any of these. (Normal approximation
	tables	E1	1	gets E0)
(c)	Times are more variable/ have higher SD			
	under flashing lights compared to loud	E1	-	For considering SDs (oe) I
	noises	E1	2	dentifying the distractor with
				greater/smaller variability. Just
			10	"higher/lower SD" is not enough
	Total		18	

Q	Solution	Marks	Total	Comments
4(a)(i)	$C \sim B(8, 0, 45)$	M1		For correct Binomial used
	P(C > 4) = 1 - 0.7396	M1		For attempting to find Prob>4 from any binomial. Allow M1 also for $1-0.4770 =$
				0.523
	= 0.2604	A1	3	0.26 ~ 0.2604
(ii)	$F \sim B(120, 0.45) \approx N(54, 29.7)$	M1		Use of normal approximation
		B1		For 54 and 29.7 (or 5.45). Ignore labels
	$P(F < 50) = P\left(Z < \frac{49.5 - 54}{\sqrt{29.7}}\right)$	m1		Standardising with their mean and $\sqrt{\text{var}}$. Disallow just 29.7(\rightarrow 0.44 or 0.45). Allow
	= P(Z < -0.82(57))	m1		missing or wrong CC and sign error. For correct CC, sign and area change. Requires previous m1
	= 0.204(48)	A1	5	$0.203 \sim 0.2065$
	- 0.201(10)	711	5	(Using -0.83 in tables gives $1 - 0.79673 = 0.20327$)
(b)(i)	Friends are logged on independently of			
	each other.	E1		
	All friends have the same probability			
	(0.45) of being logged on.	E1	2	Or equivalent
(ii)	Either contextualised reason for lack of			eg Hannah's friends may be out together
	independence of log-ons			or arranged to meet up on the site etc
		E1	1	
	or contextualised reason for different probabilities between friends			eg Different habits, commitments etc
	Total		11	

Q	Solution	Marks	Total	Comments
5(a)(i)	Use of U ~Poisson(2.5 × 3) = Poisson(7.5)	B1		For 7.5
	$P(U \le 6) = 0.378(2)$	B1	2	
(ii)	Use of Y ~Poisson(2.5 × 15) = Poisson(37.5)	B1		For 37.5
	which is approximately N(37.5, 37.5)	M1		Use of normal
	Then $P(Y \le 42) = P(Z < \frac{42.5 - 37.5}{\sqrt{37.5}})$	m1		Standardising with their mean and variance. Allow missing/wrong CC
	= P(Z < 0.81(65)) = 0.794 (0.792892)	A1	4	0.792 ~ 0.794
(b)(i)	$E(T) = 4 \times 40 = 160$ V(T) = 4 × 10 ² (= 400)	B1 M1		oe (eg 2.67 minutes)
	$\mathrm{SD}(T) = \sqrt{400} = 20$	A1	3	oe (eg 0.333 minutes). May be earned in (b)(ii)
(ii)	$T \sim N(160, 20^2)$			May equivalently work in minutes throughout.
	Then $P(120 < T < 180)$			
	$P(\frac{120 - 160}{20} < Z < \frac{180 - 160}{20})$	M1		Standardising once with their mean and SD. Allow sign error and seconds/minutes confused. Condone continuity corrections
	= P(-2 < Z < 1)			
	= 0.84134 - (1 - 0.97725)	m1		Completely correct method for 2 <i>z</i> -values AND 2 probabilites used correctly
	= 0.81859	A1	3	ie $p_1 - (1 - p_2)$ 0.818 ~ 0.819
(iii)	Let <i>D</i> be the time for 2 dedications. Then $E(D) = 200$ and $V(D) = 15^2 + 15^2$ =450	B1		For 200 and 450 or 21.2. May be implied
	Require $P(D < T)$ ie $P(D - T < 0)$	M1		For using a difference in rv's
	$D - T \sim N(40, 850)$	B1		For 40 and 850 or 29.2 cao
	Then $P(D - T < 0) = P(Z < -1.37(2))$	m1		Correct method for standardising and area change
	=0.0853 (0.085033)	A1	5	0.085 ~ 0.0854
(c)	Mean not constant as queues will depend on flight times;	E1		E1 for identification of any one correct Poisson condition
	People tend to arrive/leave queue in groups	E1	2	E1 for contextualising
	Total		19	

Q	Solution	Marks	Total	Comments
6(a)(i)	$ \begin{array}{l} H_0: p = 0.02 \\ H_1: p > 0.02 \end{array} $	B1		For both (accept in words)
	Under H ₀ , number breaking ~ B(14, 0.02) Then $p(X \ge 2) = 1 - 0.9690$	M1		For finding $P(X \ge 2)$ or $P(X > 2)$ from any binomial distribution.
	= 0.03(10)	A1		(eg allow for 1 – 0.9975)
	Can reject H_0 at the 5% level	AF1		ft their prob compared with 0.05 (or 0.025 if 2-tailed test) or cumulative prob compared with 0.95 (0.975 for 2-tailed)
	There is evidence that Pluckwell top-E strings are less reliable	E1	5	Correct conclusion in context. Needs previous 3 marks and correct form for H_0/H_1 Alternative Using critical value (= 1) can score full marks (see notes)
(ii)	Price; sound quality; etc	E1	1	Any relevant comment
(iii)	Implication that <i>n</i> is too small / breakage is relatively rare	E1		Needs <i>some</i> explanation for this E mark.
	Supported by use of $P(X = 0) = 0.7536$ for B(14, 0.02) so cannot be < 0.05	B1	2	For $0.753 \sim 0.754$ and reference to 0.05
(b)	If all 6 strings have the same prob of breaking (= 0.02) then P(doesn't break any) = $(0.98)^6$	B1		For multiplying any 6 probabilities p_i such that $0 < p_i \le 1$
	= 0.886	B1		For multiplying 6 probabilities such that $0.98 \le p_i < 1$. (Implies previous B1)
	However, for other 5 strings P(break) < 0.02 Hence, probability > 0.886 ie will be greater than 0.88	E1	3	Clear argument leading to a probability > 0.88 (likely to be but not necessarily 0.886) For example, $(0.98)^6$ (= 0.886) > 0.88 gets B1 B1 but E1 requires reference to P(not break) for the other 5 strings is >
				0.98 (oe)
	Total		11	
	TOTAL		75	