

Physics A

Advanced GCE 7883

Advanced Subsidiary GCE 3883

Mark Schemes for the Units

June 2007

3883/7883/MS/R/07

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

GCE Physics A (7883)

Advanced Subsidiary GCE Physics (3883)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2821	Forces and Motion	1
2822	Electrons and Photons	9
2823/01	Wave Properties / Experimental Skills 1 Written Paper	17
2823/03	Wave Properties / Experimental Skills 1 Practical Examination	23
2824	Forces, Fields and Energy	29
2825/01	Cosmology	33
2825/02	Health Physics	39
2825/03	Materials	45
2825/04	Nuclear and Particle Physics	51
2825/05	Telecommunications	61
2826/01	Unifying Concepts in Physics / Experimental Skills 2 Written Paper	69
2826/03	Unifying Concepts in Physics / Experimental Skills 2 Practical Examination	73
*	Grade Thresholds	81

Mark Scheme 2821 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)

^ = omission mark

- bod = benefit of the doubt (where professional judgement has been used)
- ecf = error carried forward (in consequential marking)
- con = contradiction (in cases where candidates contradict themselves in the same response)
- sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme	Unit Code	Session	Year	Version
Page 1 of 6	2821	JUNE	2007	FINAL
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative ; = separates NOT = answers v () = words whi = (underlinir ecf = error carri AW = alternative ora = or reverse	e and acceptable answ marking points which are not worthy o ch are not essential to ng) key words which <u>n</u> ed forward e wording argument	vers for the same mar f credit o gain credit nust be used to gain c	king point
Question 1	Expected Answe	ers		Marks
1 (a) (i) 1	Horizontal compo	onent = 24cos30 = 21 (20.8) (N)	C1 A1
2	vertical compone	nt = 24sin30 = 12 (12.0) ((N)	A1
(ii)	vertical force = 65	5 + 12		M1
(iii)	= 77	7 20 8 (note oct for	20.8 component)	A0
(11)	for C1 mark)	20.8 (note echlor (20.8) ²] ^{1/2} 80 (79. 8) (N) Igle need correct la	abels and arrows	C1 A1
(iv)	80 (79.8)(N) / equ the resultant force to balance above	al to (iii) e needs to be zero value to give no ac	allow ecf or forces need cceleration or	B1
	constant velocity			B1
(b) (i)	P = F / A			C1
	= 77 / 4.2 x 10 ⁻³			
	= 18000 (18333) (Pa)		A1
(ii)	more / increases downward / vertic (for larger angles)	al component (of I	P) will be greater	B1
				Total: 11

Mark Scheme	Unit Code	Session	Year	Version
Page 2 of 6	2821	JUNE	2007	FINAL
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative ; = separates NOT = answers w () = words whi = (underlinin ecf = error carrie AW = alternative ora = or reverse	e and acceptable answ marking points which are not worthy o ch are not essential to ng) key words which <u>n</u> ed forward wording argument	vers for the same mar f credit gain credit nust be used to gain c	king point
Question	Expected Answe	ers		Marks
2 (a)	The(single) <u>point</u> be taken to) acts Weak answers sc acts	where the weight o ore one only e.g. w	of an object (may /here the weight	B2
(b) (i) 1	The (distribution on not uniform	of the) mass of the	lawn mower is	B1
2	One correct mom	ent about A stated		
	B x 110 or 350 x	20		B1
	B = (350 x 20)/	110 (moments equ	uated)	B1
	B = 63.6 (N)			A0
3	A = 350-63.6 =	286(.4) (N)		A1
(b)(ii)	A goes down and	B goes up		B1
	Turning effect of produce the same force needs to go effect)	B is less / B needs moment / if distar up (to maintain th	greater force to nce goes down e same turning	B1
				Total: 8

Mark Scheme	Unit Code	Session	Year	Version
Page 6 of 6	2821	JUNE	2007	FINAL
Abbreviations, annotations and conventions used in the Mark Scheme Question 6	/ = alternative ; = separates NOT = answers v () = words whi = (underlinin ecf = error carri AW = alternative ora = or reverse Expected Answe	e and acceptable answ marking points which are not worthy o ich are not essential to ng) key words which <u>n</u> ed forward e wording e argument ers	vers for the same mar f credit gain credit nust be used to gain c	king point credit Marks
6 (a) (b)	Vertical motion: Initial spee Initial acce Initial force Speed (dow Acceleration Drag force weight – ai Reaches tee Acceleration Drag force Maximum of 5 mathematication Initial velocity Maximum of six non-stream of the stream of t	ed (down) is zero eleration (down) is g e (down) is weight (wn) increases on decreases increases (with sp ir resistance erminal velocity / sp on is zero equals weight on	g / 9.8 m s ⁻² / no drag force beed) / force is peed is constant tion the aircraft s horizontal uired / reduce area in line with body / nooth surface	B6
	Maximum of four	marking points rec	quired	B4
QWC	SPAG (greater th	an two errors)		B1
	TECHNICAL LAN	GUAGE		B1
				Total: 12

Mark Scheme	Unit Code	Session	Year	Version
Page 3 of 6	2821	JUNE	2007	FINAL
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative ; = separates NOT = answers v () = words whi = (underlinir ecf = error carri AW = alternative ora = or reverse	e and acceptable answ marking points which are not worthy o ch are not essential to ng) key words which <u>n</u> ed forward e wording argument	vers for the same mar f credit o gain credit <u>nust</u> be used to gain c	king point
Question	Expected Answe	ers		Marks
3 (a) (i)	$s = ut + \frac{1}{2} at^2$			C1
	1.20 = 0 + ½ x 9	.81 x t ² or u = 0 a	and s = $\frac{1}{2}$ x a x t ²	A1
	t ² = 2.4 / 9.81 /	0.2446		A1
	t = 0.494(6) s			A0
(ii) 1	horizontal compo	nent = distance / ti	me	C1
		= 11.9 / 0.495		
		= 24.0(6) (m :	s⁻¹)	A1
2	vertical compone	nt = u + at		C1
		= 0 + 9.81 x 0.4	95	
		= 4.86 (m s ⁻¹)		A1
(b)	(loss of / change	in) potential energy	y = mgh	C1
		= 6 x 10 ⁻² x 9.8	1 x 1.2	
		= 0. 71 (0.706)(J) 2 sf needed	A1
				Total: 9

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of 6	2821	JUNE	2007	FINAL
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative ; = separates NOT = answers v () = words whi = (underlinir ecf = error carri AW = alternative ora = or reverse	e and acceptable answ marking points which are not worthy o ch are not essential to ng) key words which <u>n</u> ed forward e wording argument	vers for the same mar f credit o gain credit nust be used to gain c	king point
Question	Expected Answe	ers		Marks
4 (a)	Young modulus =	stress / strain		B1
(b) (i)	Density = mass /	volume		B1
	Area x length = mass / density			
	Area = (2.0 x 10 ⁻³) / (7800 x 0.5) or 2.56 x 10 ⁻⁷ / 0.5			B1
	= 5.1(3) x 10 ⁻⁷ m ²			A0
(ii)	E = (F x I) / (A x e) = e / I (8 x 10 ⁻⁴)	/ stress = F / A (1.0	6 x 10 ⁸ and strain	C1
	F = (E x A x e) / I			
	= (2 x 10 ¹¹ x 5.1	x 10 ⁻⁷ x 4.0 x 10 ⁻⁴) /	0.5	C1
/!!!)	=82 (N) (81.6)			A1
(11)	Diameter for D is Extension is 4x g	half G hence area i reater	is ¼ of G	
(1.4)	Tension required	is the same = 82 (N	N)	A1
(1V)	The extension is law (OWTE)	proportional to the	force / Hooke's	B1
				Total: 8

Mark Scheme	Unit Code	Session	Year	Version
Page 5 of 6	2821	JUNE	2007	FINAL
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative ; = separates NOT = answers v () = words whi = (underlinir ecf = error carri AW = alternative ora = or reverse	e and acceptable answ marking points which are not worthy o ch are not essential to ng) key words which <u>n</u> ed forward e wording argument	vers for the same mar f credit o gain credit <u>nust</u> be used to gain o	king point
Question	Expected Answe	ers		Marks
5 (a)	Large surface are	<u>a</u> (of tyres) (in con	tact with road)	B1
(b)(i)	large area in cont $K = \frac{1}{2} \text{ mv}^2$ $= 0.5 \times 3000 \times 6$	act with the road 26) ²		C1 C1
	, , ,	,		
(ii)	= 1014000 (J) v ² = u ² + 2as a = - 26 ² / (2 x 52)	1.01 x 10°(J)		A1
	deceleration = 6	.5		A1
	unit: m s ⁻²			B1
(iii)	using F = ma	or work d	one = F x d	C1
	= 3000 x (6.5 F = 1.01	x 10 ⁶ / 52	
	= 19500 (N) = 194	400 (N)	A1
(c)(i)	smooth / rough si shorter distance ice surface less <u>f</u> dry / wet more / le up slope / down s	urface less / more <u>t</u> riction greater dist ss <u>friction l</u> onger / lope refer to weigh	friction longer / cance shorter distance t component	D 0
	smaller mass			ыz max
(ii)	same force gives or less braking fo deceleration B1	larger deceleratior rce (from off-road)	n B1 gives less	B1 B1
				Total: 12

Mark Scheme 2822 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1 Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
- 2 Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks $(\frac{1}{2})$ should never be used.
- 3 The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - = incorrect response (errors may also be underlined) Х ۸
 - = omission mark
 - = benefit of the doubt (where professional judgement has been used) bod
 - ecf = error carried forward (in consequential marking)
 - = contradiction (in cases where candidates contradict themselves in the same con response)
 - = error in the number of significant figures sf
 - 10ⁿ = error in the power of 10 in a calculation
 - wp = wrong physics (e.g.: quoting an erroneous equation)
 - = Not answered question naq
- 4 The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5 In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- Correct answers to calculations should gain full credit even if no working is shown, unless 6 otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for quidance.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Abbreviations, annotations and conventions used in the Mark Scheme AW ora	 alternative and acceptable answers for the same marking point separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which <u>must</u> be used to gain credit error carried forward alternative wording or reverse argument
---	--

1		
(a)(i)	The field is reversed / down (the page) (AW)	B1
(a)(ii)	There are more field lines / lines are closer (Not 'stronger field')	B1
(b)	Correct terms in boxes.('Clockwise': force/motion: field : current)(Two items correct: 1/2Only one item correct: 0/2)	B2
(c)	 B: (magnetic) <u>flux density</u> (Allow '(magnetic) field strength') I: current L: length (of conductor) <u>in the field</u> 	B1 B1 B1
(d)	ampere	B1 [Total: 8]
2 (a)	Finite resistance at 0° C Resistance increases	B1 B1
(b)(i)	Any <u>four</u> from: 1. The resistance of the <u>thermistor</u> decreases (as temperature is increased) 2. The <u>total</u> resistance (of circuit) decreases 3. The voltmeter reading increases 4. Explanation of 3. above in terms of 'sharing voltage' / $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ / $V = \frac{R_2}{R_1 + R_2}$	$ \begin{array}{c} B1\\ B1\\ B1\\ \overline{R_2} \times V_0 B1 \end{array} $
	5. The current increases / ammeter reading increases	B1
	6. Explanation of current increase in terms of $I = \frac{V}{R_{\text{total}}}$	B1
	(Allow ecf for statements 3. and 5. if statement 1. is incorrect - maximum score	e of 2/4)

Mark Scheme

(b)(ii)
$$I = \frac{3.6}{1200} (= 3.0 \times 10^{-3})$$
 / $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ / $V = \frac{R_2}{R_1 + R_2} \times V_0$ C1
 $R = \frac{1.4}{3.0 \times 10^{-3}}$ / $\frac{R}{1200} = \frac{1.4}{3.6}$ / $1.4 = \frac{R}{R + 1200} \times 5.0$ C1
 $R = 467 (\Omega) \approx 470 (\Omega)$ A1
(When 1.4 V and 3.6 V are interchanged, then $R = 3.1 \times 10^3$ (\Omega) can score 2/3)
(Calculation of total circuit resistance of 1.67×10^3 (\Omega) can score 2/3)
(Use of $I = \frac{5.0}{1200}$ scores 0/3)
[Total: 9]
3
(a) (Semiconductor) diode B1
(b) The diode symbol circled (No ecf allowed) B1
(c) $R = \frac{V}{I}$ C1
At 0.20 V, $R = \text{infinite } / \frac{\text{very}}{\text{large}}$ A1
At 0.70 V, $R = (\frac{0.70}{0.020} =)35 (\Omega)$ (Allow answers in the range: {31.82 to 38.89}) A1
(d) p.d across diode = 0.75 (V) / $(R_1 = \frac{4.5}{0.060} =) 75 (\Omega)$ C1
p.d across resistor = $4.5 - 0.75 = 3.75$ (V) / $(R_d = \frac{0.75}{0.060} =) 12.5 (\Omega)$ C1
 $R = (\frac{3.75}{0.060} = 62.5 \approx) 63 (\Omega)$ / $R = (75 - 12.5 = 62.5 \approx) 63 (\Omega) A1$
(Use of 0.70 V across the diode gives $R = 63.3\Omega$ - This can score 2/3)

(e) Straight line through the <u>origin</u> M1 Line of correct gradient (with line passing through 0.63 V, 0.01 A) [Possible ecf] A1 [Total: 10]

13

Λ		
- (a)	Electromotive force /e.m.f.	B1
(b)	ohm / (1) Ω	B1
(c)	Coulomb / C	B1
(d)	The sum of the currents entering a point / junction is equal to the sum of the current leaving (the same point) Or 'Algebraic sum of currents at a point = 0' (-1 for the omission of 'sum' and -1 for omission of 'point'/ 'junction') (Do not allow $I_1 + I_2 = I_3 + I_4$ unless fully explained)	ents B2
(e)(i)	S_2 closed and S_1 open.	B1
(e)(ii)	$R = \frac{\rho L}{A}$ (Allow any subject)	C1
	$\rho = \frac{RA}{L} = \frac{4.0 \times 2.3 \times 10^{-8}}{0.15}$ $\rho = 6.133 \times 10^{-7} \approx 6.1 \times 10^{-7}$ (Answer of 6.1 × 10 ⁻⁹ can score 2/3) unit: Ω m	C1 A1 B1
(e)(iii)1	$. \qquad \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \qquad / \qquad R = \frac{R_1 R_2}{R_1 + R_2}$	C1
	resistance of parallel combination = $\frac{12 \times 4.0}{12 + 4.0} = 3.0$ (Allow 1 SF)	C1
	total resistance = $8.0 + 3.0 = 11 (\Omega)$	A1
(e)(iii)2	P. $P = \frac{V^2}{R}$ / $I = 4.5/11 (= 0.4091 \text{ A})$	C1
	$P = \frac{4.5^2}{11}$ / $P = 0.4091^2 \times 11$ or $P = 4.5 \times 0.4091$	C1

$$P = 1.84 \approx 1.8$$
 (W) (Possible ecf from (iii)1.) A1

14

(e)(iii)3. ratio =
$$(\frac{V/12}{V/4.0} = \frac{4.0}{12} =)0.33$$
 / ratio = $\frac{1}{3}$ / 1:3 B1
[Total: 17]
5 (a)(i) particle / particulate / quantum / photon B1

(a)(ii) wave
 B1

 (b) Any three from points 1 to 6:
 1

 1. Photon mentioned
 B1

 2. Surface electrons are involved
 B1

 3. A single photon interacts with a single electron
 B1

 4. Energy is conserved in the interaction between photon and electron
 B1

 5.
$$hf = \phi + KE_{(max)}$$
 M1

 6. hf is the energy of the photon, ϕ is the work function (energy) and KE_(max) is the (maximum) kinetic energy of the electron.
 A1

 The frequency of blue light is greater than the red light / the wavelength of blue light is shorter than the red light (ora)

 B1
 The photon of blue light has energy greater than the work function energy / the frequency of blue light is greater than the threshold frequency (ora)
 B1

 Intensity does not change the energy of a photon
 B1

 QWC
 The answer must involve physics, which attempts to answer the question.

 Structure and organisation -

 Award this mark if the whole answer is well structured.
 B1

 Spelling and Grammar mark -

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.

(c)(i)
$$E = 2.0 \times 1.6 \times 10^{-19} (= 3.2 \times 10^{-19} \text{ J})$$
 C1

$$E = hf \qquad I \qquad E = \frac{hc}{\lambda} \qquad I \qquad f = \frac{3.2 \times 10^{-19}}{6.63 \times 10^{-34}} (= 4.83 \times 10^{14} \text{ Hz}))$$
$$\lambda = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{3.2 \times 10^{-19}} \qquad I \qquad \lambda = \frac{3.0 \times 10^8}{4.83 \times 10^{14}} \qquad C1$$

$$\lambda = 6.22 \times 10^{-7} \text{ (m)} \approx 6.2 \times 10^{-7} \text{ (m)}$$

A0

Β1

(c)(ii) visible / 'red' (Allow: 'light') (No ecf allowed) B1

(d) gradient =
$$5.6(7) \times 10^{-8}$$
 (Allow range: 5.5×10^{-8} to 5.9×10^{-8}) B1
gradient = $\frac{h}{m}$ / $m = \frac{6.63 \times 10^{-34}}{(\text{value of } \lambda) \times (\text{value of } v^{-1})^{-1}}$ C1

 $m = \frac{6.63 \times 10^{-34}}{5.67 \times 10^{-8}} = 1.1(7) \times 10^{-26} \text{ (kg)} \ /m \text{ in the range: } 1.1 \times 10^{-26} \text{ to } 1.2 \times 10^{-26} \text{ (kg) A1}$

(Possible ecf for the last two marks) (The 10⁻⁴ factor is not very clear on the v^{-1} axis; therefore allow **full credit** for using 10⁴. This gives a gradient of 5.7×10^{-16} and mass *m* of 1.17×10^{-18} kg)

[Total: 16]

Mark Scheme 2823/01 June 2007 2823/01

1.	(a)	(i) (<i>f</i>) vibrations/waves/wavelengths/cycles per second/unit time (ii) (λ) distance between neighbouring crests/troughs/pts in phase (WTTE) {idea of minimum distance is essential i.e. look <u>next</u> or equivalent word; <u>allow diagrams</u> but <u>do not allow</u> "length of a wave"}	B1 B1	[1] [1]
	(b) e.g. <u>(</u> { mos	$v = f\lambda$	B1 -B1	[2]
	(C)	(i) time for light to travel 1km is negligible OR 1000/3x10 ⁸ OR 3.3x10 ⁻⁶ s - time for sound to travel 1km = 1000/340	- B1 B1 B1 is very	[3] y
		 (ii) time interval divided by 3 (or 2.9) {OR time X 340 }	M1 A1 s}	[2]
	(d)	Any 2 differences, e.g.: light is transverse (sound is longitudinal)	81+B1 nnot); otal =	[2] 11]
2.	(a)	 (i) the angle C correctly labelled on Fig. 2.1 (ii) correct path – along the interface.(allow slightly ABOVE but not below) (iii) 0^o 	B1 B1 B1	[1] [1] [1]
	(b)	(i) ($i < C$) 'ray 1' labelled and shown refracted <u>away</u> from normal (ii) ($i > C$) 'ray 2' labelled and shown as internally reflected (ignore angle) {N.B maximum of 1 mark for just one or no incident rays} {for <u>fully</u> correct diagram with rays 1 and 2 the wrong way round award 1 m	- B1 B1 ark}	[1] [1]
	(c)	(i) correct substitution into n = 1/sinc e.g. $1.54 = 1/sinC$ hence $C = 40.5^{\circ}$ (ii) recall of n = the speed of light in air/ the speed of light in glass (or v_1/v_2)	C1 A1 -C1	[2]
		speed in glass = 3x10 ⁸ /1.54	C1	
		speed in glass = 1.95 x 10⁸ (1.948 x 10 ⁸) m/s	A1	[3]

4.

(iii) recall of n =sini/sinr		C1
correct substitution: e.g. 1.54xsin30= sinr	 C1	

hence r = **50.4**° (50.354) ------ A1 [3] {N.B. 18.9° scores 1 mark, but 30/1.54 = 19 scores zero!}

Total = 13]

3. (a) reduced height AND <u>wider</u> (ignore shape, ignore areas) ------ B1 [1]

For example

Intensity

time

(b)	(i) MULTIPATH-DISPERSION {award this mark if SEEN ANYWHERE e.g. i (ii)} -	in B1	[1]
	 (ii) DIFFERENT PATHS/LENGTHS (OR 'reflected at different angles') (WTTE) ' rays' arrive at DIFFERENT TIMES (WTTE) (do not allow 'some rays tradem in the second secon	B1 Ivel	[.]
	faster') {ignore arguments based on changes in intensity/energy}	B1	[2]
(C)	any valid suggestion e.g. use a thin fibre /MONOMODE fibre	B1	
	This reduces the number of paths (allow single path) (WTTE)	B1	[2]
	ני	Fotal	= 6]
(a)	(i)(wave sources have) <u>constant phase difference</u> (WTTE) {do not allow "in phase" but accept "same phase difference"}	B1	[1]
	(ii) difference in length between detector and each wave source (WTTE)	B1	[1]
(b)	1 path diff. = $n\lambda$ (where n= 0,1,2 etc) {allow 0, OR λ , OR 2λ etc}	B1 B1	[1] [1]
	{do not allow answers <u>purely</u> about phase diff. e.g with degrees or π used a	nd nc	ני ו ref
	(ii) recall of formula $\lambda = ax/D$	C1	
	correct substitution for a, λ and D: e.g x = (4.86 x 10 ⁻⁷ x 2)/0.5x10 ⁻³	C1	
	x = 1.94 x 10⁻³ m (1.9 or 1.944)	A1	[3]
(iii)	<u>central white</u> fringe other fringes are <u>coloured</u> (WTTE: e.g. allow spectrum formed)	B1 B1	[2]
	ſ	Total	= 91

5. (a) ANY **2 points** made from the following:

B1 + B1 [2]

reference to nodes AND antinodes OR constructive AND destructive interference
 correct link for either antinodes with constructive OR nodes with destructive
 (meeting/superposing) waves must be COHERENT (allow "in phase")

- (b) <u>two</u> antinodes labelled (with **A**) at centres of hot zones (<u>please look closely!</u>) B1 [1] {N.B. two or more correct scores 1, any incorrect scores zero),
- (c) recall of speed of microwaves = 3×10^8 (m/s) ------ B1 correct substitution: e.g. $\lambda = v/f = 3 \times 10^8 / 2.45 \times 10^9$ ------ C1 $\lambda = 1.22 \times 10^{-1}$ m = 0.122 m ------ A1 [3]

[Total = 6]

Mark Scheme 2823/03 June 2007

Planning Exercise - Skill P

A1	Diagram of <u>workable</u> arrangement of apparatus. [Source, method of splitting light (filter/prism/diffraction grating), LDR]		
A2	Correct procedure (i.e. Illuminate LDR with a wavelength and measure <i>I/V/R</i> in LDR circuit, change wavelength and measure new output – allow graph or table).	1	
A3	Circuit diagram for LDR	1	
B1	Calibration curve of intensity against <i>I/V/R</i> or use of light meter	1	
B2	Method to determine wavelength. Look up filter data/Young's slit/Diffraction grating	1	
B3	Perform experiment in a darkened room.	1	
C1	Safety precautions: Do not look directly at lamp	1	
C2	Keep output of lamp constant	1	
C3	Keep distance between lamp and LDR constant	1	
D1/2/3	Any further relevant detail. Examples of creditworthy points might be;	max 3	
	Typical resistance range of LDR Range of ammeter/ohmmeter/voltmeter for potential divider circuit with reason Discussion of determination of wavelength e.g. Young's slit/diffraction grating Response of LDR for different wavelengths e.g. sensitivity against wavelength <u>Method</u> of maintaining power of lamp constant Method of maintaining constant distance for diffraction grating Light reflected from filters Evidence of preliminary investigation in the laboratory	ing experiments	
R1/2	Evidence of the sources of the researched material Two or more (vague) independent references or one detailed reference score Two or more independent detailed references scores two marks. Detailed references should have page numbers or be internet pages.	2/1/0 one mark.	
Q	Quality of written communication This is for the organisation and sentence construction. Accounts that are rank or where the material is not presented in a logical order will not score these m Do not award both of these marks if the word count exceeds the recommende by more than 50%.	2/1/0 bling, arks. d length	

16 marks total.

Question 1

(b)	Values of 1/R and 1/V. One mark for 1/V One mark for 1/R <i>(Ignore units, rounding errors and POT errors)</i>	2/1/0
(C)	Justification of significant figures in 1/ <i>R</i> Relates to sf in <i>I</i> and <i>V</i> scores 1 mark No. of sf in 1/ <i>R</i> is the same or one more than sf in raw data/ <i>I</i> and/or <i>V</i> scores 1 Answers in terms of decimal places, resistance, graphs score zero.	2/1/0 mark
(d)	Measurements Write the number of readings as a ringed total next to the table of results. Six sets of values for <i>I</i> and <i>V</i> scores 2 marks. Five sets scores 1 mark Minor help from Supervisor then -1 . Major help (equipment set up for the candidate) then -2.	2/1/0
(d)	Column headings in the table One mark for <i>I</i> and <i>V</i> headings. Correct quantity and unit required. One mark for 1/ <i>R</i> and 1/ <i>V</i> headings. Correct quantity and unit required. Expect to see indice notation Ignore units in the body of the table.	2/1/0
(d)	Consistency of raw readings One mark for raw <i>I</i> which must be to the same number of d.p. One mark for raw <i>V</i> which must be to the same number of d.p. Penalise trailing zeros.	2/1/0
(e)	Axes One mark for each correct axis. Sensible scales must be used. Awkward scales (e.g. 3:10, 6:10, 7:10) are not a The scales must be labelled with the quantities plotted. Ignore units. Do not allow more than three large squares without a scale label. Plotted points must occupy at least half the graph grid in both <i>x</i> and <i>y</i> directions 6 large squares). If false origin, indicate with "FO"	2/1/0 llowed. s (i.e. 4 x
(e)	Plotting of points Count the number of plots and write as a ringed number on the graph grid. All observations must be plotted. Check a suspect plot. Tick if correct otherwise the correct position. If plots are omitted then zero. If the plot is accurate \leq half a small square, then two marks awarded. One mark if the plot is out by > half a small square and < than one small square	2/1/0 indicate
(e)	Line of best fit Judge by scatter of points about the line. There must be a fair scatter of points either side of the <u>straight</u> line of best fit. Allow line through five trend plots for full credit (if done well). Annotation required if mark not awarded. Do not allow a line through a curved trend.	1/0
(e)	Quality of results Judge by scatter of points about the line of best fit. Five good trend plots on the graph grid needed for mark to be scored.	1/0

(f)(i)	Gradient	2/1/0
	The hypotenuse of the Δ must be \geq half the length of the drawn line. 1 mark. Read-offs must be accurate to half a small square and ratio correct. 1 mark.	
(f)(ii)	<i>y</i> -intercept Expect the value to be read from the <i>y</i> -axis to an accuracy of half a small squ Or correct substitution from point on line into $y = mx + c$.	1/0 are.
(g) (i)	Candidate's <i>y</i> -intercept equated with 1/ <i>E</i> (can be implied from working) Value of <i>E</i> using candidate's <i>y</i> -intercept with correct unit. Sig Figs of <i>E</i> : allow 2 or 3 only. Substitution methods may only score sf mark	3/2/1/0
(g) (ii)	Candidate's gradient value equated with P/E (can be implied from working) Value of P in the range 40 - 55. Sig Figs of P : allow 2 or 3 only Unit of $P(\Omega)$.	/3/2/1/0
(h)	Random error Reference to scatter of point <u>s</u> and appropriate conclusion	1/0
(i)	Calculation of percentage difference Method of calculation scores one mark Expect to see difference/either <i>E</i> value x 100 or equivalent	1/0

28 marks available. Write the mark in the ring on page 7.

Question 2

(b) (ii)	Value of h_A to the nearest mm and in the range 10 mm $\leq h_A \leq$ 100 mm	1
(c)	Δh = 1-5 mm (whole number of mm) percentage uncertainty ratio correct.	1 1
(d)	Value of $h_{\rm B}$ larger than $h_{\rm A}$	1
(e)	Inverse proportionality ideas Method to prove or disprove <u>inverse</u> proportionality (e.g. determines constant of proportionality) Appropriate conclusion based on their method of proving or disproving <u>inverse</u> proportionality. Vague answers will not score this second mark. No method or wrong method loses both these marks	1 1
(f)	Use a travelling microscope Detailed bead method (including volume and length) Repeat measurements at least twice and find average	1 1
(g)	Evaluation of procedure Relevant points must be underlined and ticked with the appropriate marking letter.	6

ProblemSolutionADifficulty in seeing liquid in tubePlace card behind/ use dyeBParallax /meniscus/ refraction
problems/rule too far awayEye to be level/move rule close to tubeCDifficulty with measuring h accurately
(Getting end of ruler in water, tubeUse travelling microscope
Use pin markers/vernier callipers

	and ruler moving, not vertical)	Clamp tube and/or rule Mark scale on tube Method for ensuring tube/rule is vertical
D	Water droplets in tube will affect <i>h</i> Impurities/dirt in tube will affect <i>h</i>	Dry tube thoroughly before use Clean tube before use
E	Two sets of readings are not enough to verify the suggestion. Do not allow repeats or averaging ideas	Use many different diameters of tube <u>and</u> plot a graph relating <i>h</i> and <i>d</i> .

One mark for each box to a maximum of 6.

No credit for simple 'repeats', human error

Quality of written communication (i.e. spelling, sentence construction, grammar)2/1/0Capital letters at the beginning of sentences, full stops at the end scores one markCorrect spelling scores one mark. Allow max two errors.At least half a side is needed to assess QWC.Correct spelling scores one mark.

16 marks total.

Results

Question 1

I / mA	V / V	R / Ω	1/R / Ω ⁻¹	1/V / V ⁻¹
54.9	2.09	38.07	0.0263	0.478
47.7	2.46	51.57	0.0194	0.407
42.7	2.71	63.47	0.0158	0.369
39.2	2.86	72.96	0.0137	0.350
36.5	3.00	82.19	0.0122	0.333
32.5	3.20	98.46	0.0102	0.313

Plotting a graph of 1/V against 1/R produces: Gradient = 10.3 y-intercept = 0.21

y-intercept = 1/*E E* = 1/0.21 = 4.76 V

gradient = P/E $P = 4.76 \times 10.3 = 49 \Omega$

Question 2

 $d_{\rm A} = 1.20 \text{ mm}$ $d_{\rm B} = 0.60 \text{ mm}$

 $h_{\rm A} = 2.4 \text{ cm}$

 $h_{\rm B}$ = 4.6 cm

 $k_{\rm A} = 2.4 \times 1.20 = 2.88$ $k_{\rm B} = 4.6 \times 0.60 = 2.76$

Since k is approximately constant h is inversely proportional to d

Summary of shorthand notation which may be used in annotating scripts:

- SFP Significant figure penalty
- ECF Error carried forward
- AE Arithmetical error
- POT Power of ten error
- NV Not valid
- NR Not relevant
- GAP Insufficient scale markings on an axis
- NBL Not best line
- FO False origin
- NGE Not good enough
- BOD Benefit of the doubt
- R Point repeated (no further credit)
- NA Not allowed
- SV Supervisor's value
- SR Supervisor's report
- OOR Candidate's value is out of range
- CON contradictory physics not to be credited
- $\checkmark \bigtriangleup$ Used to show that the size of a triangle is appropriate (gradient calculation)
- ✓A1 Used to show the type of mark awarded for a particular piece of work
- ✓C Used to show that the raw readings are consistent
- \checkmark d Used to show that the raw readings have correct spacing
- ✓SF Used to show calculated quantities have been given to an appropriate number of significant figures
- Piece of work missing (one mark penalty)
- ^^ Several pieces of work missing (more than one mark penalty)
- \leftrightarrow Scale can be doubled in the x-direction

Mark Scheme 2824 June 2007

Mark Scheme	Unit Code 2824	Session June	Year 2007	Fi Ver	nal sion					
Page 1 of 3										
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alter point ; = sepa () = word ecf = error AW = alter	 alternative and acceptable answers for the same markin separates marking points words which are not essential to gain credit error carried forward alternative wording 					 alternative and acceptable answers for the same markit separates marking points words which are not essential to gain credit error carried forward alternative wording 		arking	
Question Expe	cted Answers				Mark	S				
1 a i ii b i ii iii 4 iv Total	T = 5 exp(-t/1.5 x 10 Ρ = ΔW/Δt =	Q = VC parabolic sl plotte $T = RC; = 6.8 \times 10^{3}$ $\Delta W = \frac{1}{2} C(V_{1}^{2} - V_{1}^{2})$ $(V_{1}^{2} - V_{1}^{2})$; giving t = 1.5 x 9.9/3.3 x 10 ³ = 3.0 allow P = V _{av} ² /R	; $W = \frac{1}{2} VC.V$ (= hape passing through ed accurately as W $x 2.2 = 1.5 \times 10^4 s$ $\frac{1}{2} = 1.1(25 - 16)$; $10^4 \times \ln 1.25 = 3.3$ mW ecf b(ii) $= 4.5^2/6.8 \times 10^3 = 2$	$\frac{1}{2} \text{ CV}^2$) gh origin = 1.1 V ² = 4.16 h = 9.9 (J) x 10 ³ (s) and (iii) 2.98 mW	2 1 2 2 1	4 7 11				
2 a	n = m	/M; ρ = m/V; p = nF	RT/V = (m/V)RT/M =	= ρRT/M	3	3				
b i		suitable test, i	i.e. ratio test, half-he	eight,etc	1 1					
c p/p _o	, = ρ/ρ _o ; p at 8 km	$= 3.5 \pm 0.3 \times 10^4 \text{ F}$	$Pa; \rho = 0.35 \times 1.3 =$	0.46 (kg m ⁻³)	3					
d p/p [`] Total	$T = constant; 10^5$	(1.3 x 293 = 3 x 10	⁴ /ρ x 250; ρ = 0.46	(kg m⁻³)	3	8 11				
3 a i ii		suitable patter	n; arrows from + ior F = kQ_1Q_2/r^2 ; Q_1	n to - ion = Q ₂ = e	2 2					
b	F = 9 (N3 gives) F _H	x 10 ³ x 1.6 ² x 10 ⁻³⁸ / (N2 give = F ₁	/25 x 10 ⁻²⁰ = 9.2 x s) F _H = m _H a _H and <i>can be</i> SHM give	10 ⁻¹⁰ (N) F _I = m _I a _I e <i>implicit</i> es a α -x	2 1 1 1	6				
c i sin ii	e or cosine curve; resonance site	hence amplitude 8.0 x 10 uation; driving freq	$e_{X_H}/x_I = a_H/a_I = m_I/n$ p^{12} m; period = 1.5 puency of radiation =	n _H = 127 x 10 ⁻¹⁴ s = natural	1 3 1	4 3				
Total		frequency o	f oscillation of mole	cule/AW	1	2 15				

Mark Scheme Page 2 of 3		me	Unit Code 2824	Session	Year 2007	Fii Ver	nal sion	
		3	2024	ouno	2001	V OI	oron	
Question			Expected Answers				Marks	
4	a b c	i ii iii iv	g_c/s $\Delta p.e. (= mg_{av}R)$ $1.6 = 4 \times 9.87 \times 1.0 \times Total$	a g _S /g _O = R ² /25F g _O = R ² /16R ² givin aver) = 3.0 x 10 ³ x 2.05 10 ⁸ /T ² giving T ² =	rrow towards centre g R^2 ; $g_s = 40/25$ (= 1. $\log g_s = 40/16$ (= 2. $\arg g g = (2.5 + 1.6)/2$ $5 \times 2.0 \times 10^7$; = 1.2 Ω $g = v^2/r$; = 4T = 24.7 $\times 10^8$ and T =	of planet = GM/R ² 6 N kg ⁻¹) 5 N kg ⁻¹) 2 = 2.(05) x 10 ¹¹ (J) r ² (5R)/T ² 5.0 x 10 ⁴ (s)	1 1 2 1 1 2 2 2	1 7 4 12
5	а	i		Mass x velo	ocity/mv with symbols	s defined	1	
	b	ii ii iiv v vi vii	$v_A = (1)$ $t_1 = 3.0$ By conservation straight lines from (0 Total	0 = max 1 mark for t $0/5 = 2.0 \text{ (ms}^{-1})$ 2.0 = 1.5 (s) $v = v_B + 5/50$ At collision the co of momentum, tot 0,0 to $(1.5,0)$; $(1.5,0)$	$m_A v_A \pm m_B v_B \text{ or } m_A v_A v_B =$ final expression with and $v_B = (10/10 =) 1$ $x = 2.1 - 1.0 \times 1.5 =$ $0)v_A = 1.0 + 0.2$ (= 1 $t_2 = t_1 + 0.6/1.2$ ontainer (and fragme al momentum is still 0) to (2.0,0.1); (x,0.1)	$f_A = m_B v_B$ $\pm m_B/m_A$ <i>put line 1</i> .0 (m s ⁻¹) <i>ecf b(i)</i> = 0.6 (m) 1.2 m s ⁻¹) = 2.0 (s) nts) stop zero/AW) for all x >2	1 1 1 1 1 1 3	3 10 13
6	а		A: the number of (und λ: the probability of in unit time/the (deca	decayed <u>) nuclei</u> wł a given nucleus do y) constant relates	nich decay per secor decay ecaying in the next s s the activity to the n undecaye	nd/rate of of <u>nuclei</u> econd or umber of ed nuclei	1 1	
	b c	i ii iii iv	N: the number of N = (n $\lambda = 0.69$ $A = \lambda l$ change of state for heating stea energy/heat losses	f <u>undecayed nucle</u> m/M) N _A = 14 x 10 $VT = 0.69/4.5 x 10^{10}$ N = 4.9 x 10 ⁻¹⁸ x 3. e/water changes to am, calculation rec s to surroundings r	<u>i</u> /nuclei of the origina (re 90 $2 \times 10^{-6} \times 7.0 \times 10^{6}$ $^{3} x 6 \times 10^{23}/238 (= 3.9^{9} \times 3.2 \times 10^{7} = 4.8 \times 10^{7} = 4.8 \times 10^{25} = 1.7 \times 10^{8};$ o steam; requiring lat juires a different spend not included/AW	al nuclide maining) and 234 = 14 (kg) 5×10^{25}) $10^{-18} (s^{-1})$ s^{-1} or Bq ent heat; cific heat capacity; max 3 marks	1 1 1 2 2 1 1	3 6 3
			give 1 mark for forn	nula only gives e	nergy needed to he	at water to 100°C		
			Total					12

Mark Scheme	Unit Code 2824	Session June	Year 2007	Final Version
Page 3 of 3				
Question	Expected Answers			Marks
7 a	force p	fo er unit length of co perp al	orce per unit (positive) force per ur onductor carrying unit pendicular to field and <i>examples of sim</i> all explain action at a c I forces per unit some	charge1hit mass1current;1current1ilarities:1distance1thing1
	field lines never cross; density of lines indicates relative strength of field E and g have the same laws/geometry, e.g. for point and/or plane distributions; for E and g force in direction of field; field lines perpendicular to surface examples of differences: forces caused by different entities; and act differently i.e. E and g different to B; force caused by stationary versus moving charge;			ength of field field field or plane 1 butions; 2 icular to surface erences: E and g 1 charge; 2 ule, etc. 2
	g is only attractiv field lines for B f magnitudes of forces	ve, E (and B) can o field closed loops o very different for	ause attractive and re others start and finish unit; detail. <i>max</i>	epulsive 1 forces 1 on m,Q 2 7 <i>marks</i>
b	meanings of B and A	A, i.e. flux density o	magnetic fl or field strength and a linking/passing throug	ux = BA 1 rea ⊥ to 1 it h a coil: 1
	and equals N x Faraday's law: change	flux where N is the induced e.m.f./vo of flux linkage thr	e number of turns (of Itage is proportional to ough it /correct mathe formula	the coil) 1 o rate of ematical 1 tion/AW
	Lenz's law: the dire relationship of Ler explanation/discussi	ction of the induce oppose the m nz's law to conserv on/description qua	ed e.m.f./voltage is sub otion/change that pro- vation of energy or oth max ality of written commu	ch as to duced it 1 her valid 5 marks 2 nication

Total
Mark Scheme 2825/01 June 2007

2825/0	1	Mark Scheme		June 2007
1	a.	planet moves in opposite direction/ backwards compared to position of stars		1 1
	b.	planets move with different orbital periods/ speeds Earth moves past/ overtakes planet		1 1
	c.i.	v = $2\pi x 1,100 x 6.4 x 10^{6} / 365 x 24 x 3600$ v = $1.4 x 10^{3} \text{ m s}^{-1}$		1 1
	c.ii.	any 2 from Earth would have a relatively large speed objects would not fall vertically to ground a wind would be expected expect to observe stellar parallax Copernican system required epicycles	1 1 1 1 1	2 8
2.	a.i.	the brightness of a star as observed from Earth		1
	a.ii	apparent mag decreases/ apparent magnitude more negative Intensity α (distance) ⁻² / same energy over smaller		1
	a.iii	m - M = 5lg(d/10) d/10 = 10 ^{-0.116} d = 7.6(6) pc		1 1 1
	b.	any 3 from fusion of protons/ <u>hydrogen</u> nuclei helium nuclei formed energy from loss of mass / E = Δmc^2 detail of p-p reactions	1 1 1 1	3
	c.i.	$2 \times 10^{28} / 5.2 \times 10^{30} = 3.8 \times 10^{-3} (W \text{ kg}^{-1})$		1
	c.ii.	power/mass = 60 x 9.81 x 2.5 / 10 x 60 power/mass = 2.45 (W kg ⁻¹) accept 2.5		1 1
	c.iii c.iv	ratio = $2.45 / 3.8 \times 10^{-3}$ = 645 ecf from (i) and (ii) accept any sensible remark fusion limited to stellar core /	1	1
		energy released per reacting nucleon in Vega greater	1	1
			total 1	4
			-	

3.	a.	(apparent) change in position of a star due to change in position of Earth		1 1
	b.i	distance = 1/ parallax angle distance = 1/ 0.314 = 3.2 pc		1 1
	b.ii	$3.2 \times 3.1 \times 10^{16} = 9.9 \times 10^{16} \mathrm{m}$		1
	c.i.	all points plotted correctly		1
	c.ii.	best straight line drawn		1
	C.iii.	1. gradient = 2.1×10^{-18} unit: sec ⁻¹ 2. 1/ gradient = 4.8×10^{17} (s) ECF		1 1 1
	c.iv.	gradient is Hubble's constant 1/ gradient is approximate age of Universe		1 1
	d.	galaxies (stars) are more distant than that in part a. parallax too small for accurate measurement		1 1
			total	14
4.	a.i.	arm <u>each side</u> bulge in <u>centre</u>		1 1
	a.ii.	elliptical		1
	b.i	luminosity/ <u>absolute</u> magnitude temperature increasing right to left main sequence: diagonal, top left to bottom right		1 1 1
	b.ii.	X on lower half of line drawn		1
	C.	any 2 from <u>larger mass stars</u> have greater temperature <u>larger mass stars</u> have greater rates of fusion <u>larger mass stars</u> are shorter lived	1 1 1	2
			ເບເລ	19

2825/01		Mark Scheme		June 2007	
5.	a.	isotropic: appears the same in every direction		1	
		of galaxies in any given volume / owtte		1	
	b.i.	volume = mass / density = 2×10^{30} / 3.3×10^{23} volume = $6.1 \times 10^{6} \text{ pc}^{3}$		1 1	
	b.ii.	any 3 from density less than critical density open universe universe will expand forever critical density; universe expands to limit	1 1 1 1		
		allow energy argument: any 3 from required pe is now lessened/ ke of galaxies > Δpe open universe universe will expand forever idea of escape velocity	1 1 1 1 total	3 7	
6.	a.	Any 5 from Emission: light from surface of star continuous spectrum Absorption : (continuous) crossed by dark lines absorption in stellar atmosphere reference to role of electrons elements have a unique spectrum elements identified by comparison of dark lines with spectra on Earth red/blue shift other detail eg spectral broadening	1 1 1 1 1 1 1	5	
	b.	X rays: most are absorbed by atmosphere Ultra-violet: most are absorbed by atmosphere visible: most pass through radio: most pass through		1 1 1 1	
			total	9	

7.	a.	Any 5 from Rocket, light and observer Rocket <u>accelerates</u> Time between flashes measured Time between flashes increases for lamp behind Principle of equivalence Rate of clocks is less in gravitational	1 1 1 1	
		field	1	5
	b.i.	orbit rotates centred on sun		1 1
	b.ii.	gravitational field from Sun is strongest		1
	b.iii.	provides evidence for General Theory of Relativity		1
			tota	al 9

(a)	(i)	load = 5000 x 9.81 (accept mg) k = 5000 x 9.81/ 0.04		[1]	[1]
	(ii)	$f = 1/2\pi (1.2 \times 10^{6} / 1.25 \times 10^{3})$ f = 4.9(3) Hz (accept 4.98 or 5) (use of m = 5000kg: f = 2.4(7) Hz scores 1)		[1]	[1]
(b)	(i)	R = 50/ 12000 = 4.17×10^{-3}		[1]	
	(ii)	P = 50 x 12000 = 600 kW ECF for R		[1]	
	(iii)	E = $15 \times 420 \times (1000 - 20)$ E = 6.17×10^6 J (accept 2SF or 1SF)		[1]	[1]
	(iv)	t = 6.17 x 10 ⁶ / 600,000 (ECF from iii) t = 10.3 s		[1]	[1]
(c)		Any two from: <u>conduction</u> through each <u>contact</u> <u>conduction</u> through <u>air</u> <u>convection</u> (in air) [1] <u>radiation/ infra red</u> / visible <u>light</u> <u>rate</u> of loss increases with temperature (difference) [1] energy to heat water (in contacts) [1] <u>longer time</u> increases the energy losses	[1] [1] [1] [2]	[1]	[3]
(d)	(i)	Any two from: cross-sectional area is increased 4 times resistance is decreased 4 times R = pl/A	[1]	[1] [1] [2]	
	(ii)	maximum of 3 marks power (accept current) is increased 4 times mass is increased 4 times so time unchanged	[1] [1] [1]	[3]	
(d)	(ii)	spring constant increased/ smaller extension/ stiffer spring natural frequency will increase.		[1]	[1]
			[Total:	20]	

Mark Scheme 2825/02 June 2007

- 1 (a)(i)
 - F x $25 \sin 15 / F x 0.25 \sin 15$ for one moment. (1)
 - 450 x 40 cos 30 / 450 x 0.4 cos 30 for the other moment. (1)
 - <u>moments</u> equated or stated, even if not correct. [Do not accept <u>forces</u> resolved vertically] (1)
 - Answer F = 2409 (N). (1)

(a)(ii)

• Answer F = 951 (N). (1)

(b)

- Link large force (2409N) with small angle (30⁰) / The more nearly horizontal / the smaller the angle with the horizontal your back is, the greater the <u>force</u> needed (from the muscles). (1)
- the force is large because the anti-clockwise moment is large (1)
- the anti-clockwise moment is large because the <u>perpendicular distance to the pivot</u> is large. (1)

(First 3 points + any one of the following:) (1)

- consequence, eg tendon 'goes', etc.
- (Therefore) keep your back as vertical / upright as possible,
- ... with the load close to your body ...
- ... and bend your knees / use leg muscles to do some of the lifting.
- ...back is strong in compression / weak in shear, etc.
- 2 (a) (to a maximum of 7 marks) e.g.
 - X-ray source + detectors round patient ...
 - ... rotated around patient .../ the signal / X-ray passes through the same section of the body from different directions.
 - ... producing a (thin) slice / cross-section.
 - Idea of absorption / less gets through / more is absorbed ...
 - by dense material / bone / material of high Z / High Z related to materials such as bone / Low Z to materials such as soft tissue
 - attenuation is by the photo-electric effect
 - the possibility of using a contrast medium.
 - better than a simple X-ray at differentiating other organs.
 - patient is moved a small distance and the process is repeated / process continues in a spiral.
 - a computer (analyses the data) / identifies the position of organ/bone ...
 - ... and forms a 3-D image.

(b)

- Patients are exposed to <u>ionising</u> radiation. (1)
- (Ionising radiation) could cause cancer / damage cells (1)

Plus a maximum of ONE from:-e.g. (1)

- It's expensive.
- Time consuming / uses valuable resources, etc..

3 (a)

- Top frequency less than a <u>stated value</u> for normal ear (e.g. 16 20 kHz). (1)
- Bottom frequency is higher than a <u>stated value</u> for normal ear (20 25 Hz) (1)
- Minimum detectable intensity is higher than for a normal ear since it can only detect to about <u>10⁻¹¹</u> W m⁻² / cannot detect <u>10⁻¹²</u> W m⁻². (1)

A qualitative statement that the <u>frequency range</u> is less than that for a normal ear scores one of the first two marks.)

(b)(i)

$65 = 10 \lg I / 10^{-12}$ (1)	$65 = 10 \text{ lg I} / 10^{-11}$ (0)	
$I = 10^{6.5} \times 10^{-12} (= 10^{-5.5})$ (1)	$I = 10^{6.5} \times 10^{-11} $ (1)	
$I = 3.2 \times 10^{-6} W m^{-2}$ (1)	$I = 3.2 \times 10^{-5} W m^{-2}$ (1))

(b)(ii)1

- A comment from the graph that at 65 dB sound cannot be detected at frequencies below a stated value in the range100 200 Hz [but ecf will need to be applied from (b)(i) where possible] (1)
- A sensible comment relating to the conversation, (1) e.g.
 - * Some distortion due to lower frequencies being missing.
 - * It would need to be louder for the lower frequencies to be detected.
 - * 65 dB is loud for normal talking (40 60 dB).
 - Sound (of a given sound intensity) is louder (with increasing frequency) up to 2-3 kHz.

(b)(ii)2

- Bass <u>not</u> detected / bass not loud enough to be heard (1)
- Singing can be heard well at the higher pitch (or higher frequency) / but lower range missing or not loud enough to hear (1)
- <u>Top end of</u> percussion cannot be heard / frequencies above 5 8 kHz cannot be heard (1)

```
4 (a) (to a maximum of 2 marks) (1) (1)
```

Focusing from ∞ to near:

- The shape of the lens changes from thin to fat.
- The power of the lens increases / its focal length decreases.
- The (ciliary) muscles go from relaxed to taut.

(b)

• p = 1/u + 1/v or substitution $\Delta p = 1/0.25 - 1/\infty$ (1)

• p = 4.0 (1) unit: D (1)

(C)

- (Most of the) refraction happens at the (air-)cornea (interface). (1)
- Distant objects will be clear(est) / close objects will be (most) blurred. (1)
- For a **distant object** the lens has least effect on the focusing / the lens is relaxed / its power is lowest. (1)
- For a close object the lens has most effect on the focusing / its power is strongest.
 (1)

(If the answer scores none of the above three marks, but clearly implies that objects will still be visible but blurred, allow 1/3.)

```
(d) (i)
```

- 10 x 3 x 5000 (= 150000) (1)
- (150000) x 100 / 85 (1)
- = 1.8×10^5 (1)

(d) (ii)

- $E = h c / \lambda$ (1)
- E = $6.6 \times 10^{-34} \times 3 \times 10^8 / 4.0 \times 10^{-7} = 4.95 \times 10^{-19} \text{ J}$ (1) 1.8 × 10⁵ × 4.95 × 10⁻¹⁹
- = 8.9×10^{-14} W (1) ecf (i)
- **5** (a) [to a max. of **5**]
 - A p.d. / voltage must be applied ...
 - ... causing the (piezoelectric) <u>crystal</u> to change shape.
 - A named crystal (eg quartz, lead zirconate titanate [PZT], lithium sulphate, barium titanate)
 - An <u>alternating p.d.</u> causes the crystal to <u>oscillate</u> / <u>vibrate</u> (accept resonate).
 - If the frequency applied matches the natural frequency of the crystal, resonance occurs.
 - The crystal is damped / stops vibrating when the applied voltage stops ...
 - ... <u>due to</u> the backing material / epoxy resin ...
 - ... which also absorbs backward-travelling sound waves (which might give spurious reflections).

(b)(i)

- 5.4 cm +/- 0.1 cm read from the graph (1)
- = 5.4 x 20 μ s cm⁻¹ x 1.5 x 10³ m s⁻¹ (1)
- = 0.162 m (1)
- 0.162 / 2 = 0.081 m or 8.1 cm (1)

(b)(ii)

- High reflection at the air-skin boundary / Little ultrasound enters the body / A very large peak right at the start ... (1)
- ... due to large <u>difference</u> in <u>acoustic impedance</u> / allow '...due to large <u>difference</u> in <u>density</u>'. (1)
- Very low <u>peaks</u> / no (subsequent) <u>peaks</u> (not just 'nothing') (1)

6 (a)

- It kills cells (1)
- Cells are most susceptible when dividing / malignant cells divide more often / malignant cells are more vulnerable than healthy cells (1)

(b)(i)

```
• Number of ion pairs = 25 \times 10^{-6} / 1.6 \times 10^{-19} = \frac{1.6 \times 10^{14}}{10^{14}} (1)
```

(b)(ii)

- <u>34</u> x <u>1.6 x 10⁻¹⁹</u> x <u>answer to (b)(i)</u> [which <u>should</u> be 1.6 x 10¹⁴] (1)
- = 8.5×10^{-4} [allow ecf] (1)
- Gy / J kg⁻¹. (1)

(c)(i)

- = $38 \times 25 \times 10^{-6}$ (1)
- = $9.5 \times 10^{-4} \text{ Gy}$ (1)

(c)(ii)

- An appropriate reference to the values in the table (e.g. for 30 keV : large difference in factor between muscle and bone)
- Bone absorbs more / more attenuation in bone.
- Treatment of malignant cells in bones / bone can be targeted / less damage to surrounding healthy tissue.

(c)(iii)

- Dose equivalent = Q x absorbed dose or $1.71 \times 10^{-3} / 9.5 \times 10^{-4} = Q$ (1) $1.71 \times 10^{-3} / ans to (c)(i)$
- Q = 1.8 (1)

(a)	(i)	load = 5000 x 9.81 (accept mg) k = 5000 x 9.81/ 0.04		[1]	[1]
	(ii)	f = 1/2π (1.2 x 10 ⁶ / 1.25 x 10 ³) f = 4.9(3) Hz (accept 4.98 or 5) (use of m = 5000kg: f = 2.4(7) Hz scores 1)		[1]	[1]
(b)	(i)	R = 50/ 12000 = 4.17 x 10 ⁻³		[1]	
	(ii)	P = 50 x 12000 = 600 kW ECF for R		[1]	
	(iii)	E = 15 x 420 x (1000 -20) E = 6.17 x 10 ⁶ J (accept 2SF or 1SF)		[1]	[1]
	(iv)	t = 6.17 x 10 ⁶ / 600,000 (ECF from iii) t = 10.3 s		[1]	[1]
(c)		Any two from: <u>conduction</u> through each <u>contact</u> <u>conduction</u> through <u>air</u> <u>convection</u> (in air) [1] <u>radiation</u> / <u>infra red</u> / visible <u>light</u> <u>rate</u> of loss increases with temperature (difference) [1] energy to heat water (in contacts) [1] <u>longer time</u> increases the energy losses	[1] [1] [1] [2]	[1]	[3]
(d)	(i)	Any two from: cross-sectional area is increased 4 times resistance is decreased 4 times R = pl/A	[1]	[1] [1] [2]	
	(ii)	maximum of 3 marks power (accept current) is increased 4 times mass is increased 4 times so time unchanged	[1] [1] [1]	[3]	
(d)	(ii)	spring constant increased/ smaller extension/ stiffer spring natural frequency will increase.		[1]	[1]
			[Total	: 20]	

Mark Scheme 2825/03 June 2007

(a)	(i)	Atomic arrangement is random / has no pattern.		[1]
	(ii)	Atoms are arranged in repeating patterns; occupying the least possible space or wtte / Each atom has 12 neares neighbours.	(1) st (1)	[2]
(b)	(i)	Graph through origin with (short) linear section then reducing gradient	t.	[1]
	(ii)	Straight section - elastic; Curved section - plastic.	(1) (1)	[2]
(c)	(i)	Atoms increase separation (in direction of force applied); Atoms return to equilibrium / original separation when force removed.	(1) (1)	[2]
	(ii)	Planes / layers of atoms slide past each other / Bonds between atoms Atoms remain in new position / only partly recover when force remove	s brea ed.(1)	ak;(1) [2]
(d)	(i)	Volume of atom = 4/3 x π x (1.28 x 10 ⁻¹⁰) ³ = 8.8 x 10 ⁻³⁰ m ³	(1)	
		No of atoms in 1 m ³ = $0.74 / 8.8 \times 10^{-30}$	(1)	
		$= 8.4 \times 10^{28}$	(1)	[3]
	(ii)	Structure includes grain boundaries (1); vacancies (1); dislocations impurity atoms	(1); (1).	max[2]
			ד]	otal: 15]
	Trolle buffe Motio Repu (Sho Motio mag Trolle	eys move / accelerate towards each other due to magnetic attraction up ins touch; on slows / decelerates as buffers compress and cause repelling force; ulsive force proportional to compression of spring; ort) period of vibration about final position before motion stops; on stops when energy used in compressing springs = energy gained from netic field; eys stationary when attractive force of magnets = repulsive force of buf	ntil (1) (1) (1) (1) om (1) fers:	

Mark Scheme

2825/03

1

2

(1) max[4]

June 2007

Atoms have attractive and repulsive forces;(1)Atoms must be very close before forces come into play;(1)Attractive force occurs at longer range than repulsive force;(1)Attractive and repulsive forces between atoms are electrostatic / due to electric(1)charges;(1)Atoms have a final / equilibrium separation when forces balance;(1)Atoms continue to vibrate about equilibrium position (due to thermal energy).(1)

[Total: 8]

June 2007

3	(a)	$E = hc/\lambda$ = 6.63 x 10 ⁻³⁴ x 3.0 x 10 ⁸ / 650 x 10 ⁻⁹ = 3.06 x 10 ⁻¹⁹ (J) = 3.06 x 10 ⁻¹⁹ / 1.60 x 10 ⁻¹⁹ = (1.91 eV)	(1) (1) (1)	[3]
	(b)	 (i) Photons (of the red light); have enough energy; to promote electrons (in the atoms of the LDR) from the valence band to conduction band; 	(1) (1) o the (1)	[3]
		(ii) With light of greater intensity there is greater number of photons (per s More electrons are promoted so (with same voltage) current will be gre and resistance smaller.	ec);(1) ater (1)	[2]
	(c)	(i) Critical wavelength = hc / E = $6.63 \times 10^{-34} \times 3.0 \times 10^{8}$ / ($1.5 \times 1.6 \times 10^{-19}$ = 8.29×10^{-7} m = 829 nm.	⁹)(1) (1)	[2]
		(ii) Infra-red.		[1]
			[Total:	11]
4	(a)	Electrons have high speed random motion; r.m.s. speed defined / linked to random motion; Electrons make (random) collisions with atoms; Slower speed motion in opposite direction to current / towards + terminal; This motion superimposed on the random motion; Drift velocity is the <u>mean / average</u> (resultant) velocity (of the free electrons	(1) (1) (1) (1) (1) s)(1) max	<[4]
	(b)	Voltmeter connections at opposite points on long edges of slice.		[1]
		(ii) 1 v = V _H / Bd = 0.016 / (0.065 x 0.005) (= 49.2 m s ⁻¹)	(1) (1)	[2]
		2 n = I / A e v = 0.200 / (0.005 x 0.0012 x 1.6 x 10 ⁻¹⁹ x 49.2)	(1) (1)	[0]
		m^{-3} / per m^{3}	(1)	[3]
	(c)	 4.2 x 10 m⁻³ / per m³ More thermal energy; so more electrons promoted to conduction band / number density / n is gre drift velocity / v is smaller because I = nAve; 	(1) (1) ater;(1) (1)	[3]
	(c)	$\begin{array}{l} -4.2 \times 10 \\ m^{-3} / \ per \ m^{3} \end{array}$ More thermal energy; so more electrons promoted to conduction band / number density / n is gre drift velocity / v is smaller because I = nAve; Hall voltage / V _H is smaller because V _H = Bvd.	(1) (1) ater;(1) (1) (1)	[3] [4]

5	(a)	(i) Efficiency = power output / power input or as percentage.		[1]
		(ii) Power input = power output / efficiency = 200 / 0.96 = 208.3 W Power loss = 208.3 - 200 = 8.3 W	(1) (1)	[2]
	(b)	Power loss due to hysteresis effects; Due to the energy used to move domain walls / change alignment of dip (in the core material); In 1 cycle is represented by / proportional to area enclosed by a hystere is proportional to frequency; is proportional to area of hysteresis loop x number of cycles in 1 sec.	(1) ooles (1) esis loop; (1) (1) max	(1) : [4]
		Power loss due to eddy currents; Power loss given by I ² R; Changing flux causes induced voltage in the core; Eddy currents are caused by / proportional to induced voltage; Induced voltage / eddy currents increase as rate of change of flux increase So power loss increases with frequency.	(1) (1) (1) (1) ases (1) max	c [4]
			[Total:	11]
6	(a)	(i) The energy gap between the valence and conduction band in an insulate may be greater than the photon energy of all the given wavelengths; These photons will pass through the insulator without being absorbed.	or (1) (1)	[2]
		 (ii) Energy levels of electrons in the conduction band are finely spaced; Photons of all visible light wavelengths have sufficient energy to excite a electron (in a surface atom) to a higher energy level; Photons are re-emitted from the surface as reflected light. 	(1) in (1) (1)	[3]
	(b)	The green and blue wavelengths have photon energies greater than the bar and are absorbed; The red wavelength has photon energy less than the band gap and passes The insulator appears red to the observer.	nd gap (1) through; (1)	(1) [3]
	(c)	(Amount of) Rayleigh scattering is proportional to 1/ λ^4 Reduction in intensity of red light = $\frac{450^4}{650^4} \times 5$	(1) (1)	
		= 1.15 %	(1)	[3]
			[Total:	11]

(a)	(i)	load = 5000 x 9.81 (accept mg) k = 5000 x 9.81/ 0.04		[1]	[1]
	(ii)	f = 1/2π (1.2 x 10 ⁶ / 1.25 x 10 ³) f = 4.9(3) Hz (accept 4.98 or 5) (use of m = 5000kg: f = 2.4(7) Hz scores 1)		[1]	[1]
(b)	(i)	R = 50/ 12000 = 4.17 x 10 ⁻³		[1]	
	(ii)	P = 50 x 12000 = 600 kW ECF for R		[1]	
	(iii)	E = 15 x 420 x (1000 -20) E = 6.17 x 10 ⁶ J (accept 2SF or 1SF)		[1]	[1]
	(iv)	t = 6.17 x 10 ⁶ / 600,000 (ECF from iii) t = 10.3 s		[1]	[1]
(c)		Any two from: <u>conduction</u> through each <u>contact</u> <u>conduction</u> through <u>air</u> <u>convection</u> (in air) [1] <u>radiation</u> / <u>infra red</u> / visible <u>light</u> <u>rate</u> of loss increases with temperature (difference) [1] energy to heat water (in contacts) [1] <u>longer time</u> increases the energy losses	[1] [1] [1] [2]	[1]	[3]
(d)	(i)	Any two from: cross-sectional area is increased 4 times resistance is decreased 4 times R = pl/A	[1]	[1] [1] [2]	
	(ii)	maximum of 3 marks power (accept current) is increased 4 times mass is increased 4 times so time unchanged	[1] [1] [1]	[3]	
(d)	(ii)	spring constant increased/ smaller extension/ stiffer spring natural frequency will increase.		[1]	[1]
			[Total	: 20]	

Mark Scheme 2825/04 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 3. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 4. Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written</u> on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 8. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

	/ = alternative and acceptable answers for the same
Abbreviations, annotations and	; = separates marking points
conventions used in the Mark Scheme	 () = words which are not essential to gain credit
	= (underlining) key words which <u>must</u> be used to gain credit
	ecf = error carried forward
	AW = alternative wording
	ora = or reverse argument

Question	Expected Answers						
1 (a) (i)	gradient = $2.7 \times 10^{-45} (m^3)$ ans. (1); accept values between 2.7 and 2.8 × 10^{-45}	1	[1]				
(ii)	quotes $r^3 = A r_0^3$ or $r = A^{1/3} r_0$ deduces $r_0 = \sqrt[3]{(\text{gradient})}$ calculates $r_0 = 1.4 \times 10^{-15} \text{ m}$ allow 1.39 to 1.41 × 10 ⁻¹⁵ m if values from graph used, max 2/3 answer without working scores 2/3 allow ecf from (i)	1 1 1	[3]				
(b)	$\rho = m/V or \rho = m/[(^4/_3)\pi r^3] \qquad \text{equation}$ $either = \frac{12 \times 1.67 \times 10^{-27}}{12 \times ^4/_3 \pi (1.4 \times 10^{-15})^3} \qquad \text{subs.}$ $= 1.45 \times 10^{17} \text{ kg m}^{-3} \qquad \text{ans.}$ allow ecf for r_0 from (a)(ii) omission of one 12 factor can score max 2/3 omission of conversion factor from u to kg can score max 1/3	1 1 1	[3]				
	or reads off $12r^3$ where $A = 12$ from graph then $\rho = \frac{12 \times 1.67 \times 10^{-27}}{4/_3 \pi \times 3.28 \times 10^{-44}}$ (1) = $1.46 \times 10^{17} \text{ kg m}^{-3}$ (1)						
(c)(i)	ratio = $\frac{1.45 \times 10^{17}}{3530}$ = 4.12×10^{13}	1	[1]				
(ii)	mass of nucleus is about the same as mass of atomeithermost of atom is empty space or AWornucleus occupies only (very) small part of volume of atom;orlink betwen mass and volume e.g. same mass in larger / smaller	1					
	volume;	1	[2] 10				
2 (a)(i)	(neutrons) having energies comparable with thermal energies / slow moving / low kinetic energy / energy in range 6 - 100 eV / energy similar to (energy of) atoms of surroundings ;	1	[1]				
(ii)	<i>either</i> thermal neutrons will be captured / absorbed (by U-235 nuclei) <i>or</i> higher energy neutrons do not get absorbed;	1	[1]				

(b)(i)	3 points plotted; any point incorrect loses this mark	1							
(ii)	curve through 3 points and heads down towards zero; line peaks between Br and origin;	1 1	[3]						
(iii)	BE per <i>nucleus</i> of ${}^{235}_{92}$ U = 7.60 x 235 (= 1786 MeV) BE of products = 8.20 x 146 + 8.60 x 87 both lines (= 1197 + 748 MeV)	1							
	so energy released = $(1197 + 748) - 1786$ = 159 MeV pomits multiplication by nucleon number to get 9.2 MeV gets $0.1.0 = 1$								
	graph: 2 humps; sensibly symmetrical with minimum between 110 and 125;	1 1	[2]						
(iv)	on Fig. 2.1 two labels F near to Br and La;								
(\mathbf{v})	two regions shaded / marked / ringed around Br and La with gap between;	1							
(*)	labels etc. on Fig. 2.2 scores zero		[2]						
(c)(i)	speed after collision = 0.93 x speed before collision so after 120 collisions, final speed = $(0.93)^{120} \text{ x}$ speed before collision = $2.48 \text{ x} 10^3 \text{ m s}^{-1}$								
(ii)	this is collision is head-on but other collisions may not be;	1	[1]						
			15						
3(a)	confines / pulls together plasma / nuclei / ions / nucleons / protons; (1) so increases density/ concentration / number per unit volume; (1) and increases frequency / number of collisions among nuclei; (1) gravitational attraction heats plasma / gravitational p.e. changed to heat; (1)								
(b)	either area is potential / stored energy / work done / energy to overcome coulomb barrier	4							
	it is (minimum) energy needed for fusion;	1	[2]						
(c)	$E_{\rm k} = 2.07 {\rm x} 10^{-23} {\rm x} 15 {\rm x} 10^6 (= 3.1 {\rm x} 10^{-16} {\rm J})$ so for two nuclei, $E_{\rm k} = 6.2 {\rm x} 10^{-16} {\rm J}$	1	[1]						

(d)	combined (mean) k.e. << required p.e. / energy needed for fusion; (1) aware there is a range / spread of (nuclear) k.e.s; (1) (very) small proportion of ${}^{1}_{1}$ H nuclei have enough energy to cause fusion;(1) aware (quantum) tunnelling can occur so fusion at distances > x_{0} or AW;(1) any 3					
(e)(i)	reactant mass = $2 \times 1.007\ 276$ = $2.014\ 552\ u$ product mass = $2.013\ 553$ + $0.000\ 549$ = $2.014\ 102\ u$ so Δm = $4.5 \times 10^{-4}\ u$ $E = \Delta m\ c^2$ = $4.5 \times 10^{-4}\ x\ (1.66\ x\ 10^{-27}\)\ x\ (3.0\ x\ 10^8\)^2$ = $6.7\ x\ 10^{-14}\ J$ allow conversion using 1 u = $931\ MeV$	1 1 1	[3]			
(ii)	positron and electron annihilate	1	[1]			
			13			

4 1	acceleration both accelerate (charged particles) by moving them through a p.d. / elect field / attraction/repulsion due to charged electrodes; (tric 1)
2	p.d. constant in cyclotron, varies / changes in synchrotron;	(1)
3	both accelerate (particles) many times;	(1)
4	both accelerate only when particle is in gap between electrodes;	(1)
5	no acceleration / speed increase when particles inside electrodes;	(1)
6	synchronisation both have frequency of p.d. equal to frequency of transit or AW;	(1)
7	in cyclotron, frequency is constant but in synchrotron frequency varies;	(1)
8	cyclotron orbit radius allowed to increase but synchrotron radius is const	ant;
9	curved path both use magnetic field (at right angles to direction of motion) to produce curved path / circular motion;	(1) a (1)
10	both <i>B</i> fields exert centripetal force on particle;	(1)
11	cyclotron has uniform field but synchrotron field varies round ring (due to gaps);	(1)
12	magnetic field is constant in cyclotron but can vary in synchrotron (with respect to time);	(1)
13	energy maximum energy / speed in cyclotron is (much) less than for synchrotror	n;(1)
14	cyclotron limit due to (relativistic) change of mass as particle approaches speed of light (but no limit in synchrotron);	; (1)
15	hence particles in cyclotron get out of synch. with accelerating fields (but this does not happen in synchrotron);	(1)
16	synchrotron loses energy (as radiation) so energy input is needed to maintain particles in ring;	(1)
17	advantages synchrotron accelerates (particles) to energy high enough to create new particles / investigate structure of particles;	(1)
18	can be used to produce synchrotron radiation;	(1)
19	cyclotron can be used to synthesise / make / produce radioisotopes;	(1)
20	cyclotron is (much) more compact / would fit into a laboratory or AW;	(1)

21	cyclotron can be used to treat eye cancer / for radiotherapy; (1)		
22	synchrotron allows colliding opposed beams (of particles); (1) any 12	12	12
5(a)	number of <i>decayed</i> U-238 nuclei = $\frac{1}{2}$ x number of <i>undecayed</i> U-238 nuclei; so $\frac{1}{3}$ of U-238 has decayed and $\frac{2}{3}$ of U-238 has not decayed; (so ratio = $\frac{2}{3}$)	1	[2]
(b)	either $\lambda = 0.693 / T_{\frac{1}{2}} = 0.693 / (4.47 \times 10^9)$ (= $1.55 \times 10^{-10} y^{-1}$) subs. $N = N_0 e^{-\lambda t}$ so $N / N_0 = e^{-\lambda t}$ and $\ln (N / N_0) = -\lambda t$ $\ln (0.667) = -1.55 \times 10^{-10} t$ alg. / arith. so $t = 2.61 \times 10^9 y$ and $\ln (0.667) = x \ln(0.5)$ and $x = 0.584$ then $t = x T_{\frac{1}{2}} = 0.584 \times 4.47 \times 10^9 = 2.61 \times 10^9 y$	1 1 1	[3]
(c)	either $N_0 = (5.00 / 238) \times 6.02 \times 10^{23}$ subs. $= 1.26 \times 10^{22}$ atomsans.or $N_0 = (5.00 \times 10^{-3}) / (1.67 \times 10^{-27} \times 238)$ (1) $= 1.26 \times 10^{22}$ atoms(1)	1 1	[2]
(d)	exponential decay graph for U: starts from N_0 and approaches <i>t</i> axis; exponential growth of Pb from zero: approaches a constant value of N_0 ; lines sensibly 'mirror images';	1 1 1	[3] 10
6(a)(i)	leptons;	1	[1]
(ii)	neutrino / muon / tau(on);	1	[1]
(b)(i)	up down down / udd;	1	[1]
(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	
(iii)	so for neutron $Q = 0$ B = 1 S = 0	1	[3]

(c)	<i>either</i> express in quarks:			
	u + u-bar τ d + u u d s-bar d d d		1	
	compares quarks: (u: $u + u + u$ -bar τ u u 's cancel, so balances) <i>either</i> d: $d + d$ τ $d + d + d$ no balance		1 1	
	or s: 0 τ s-bar so no balance concludes reaction not possible		1	
	or			
	$(Q: 1 - 1 \tau 0 + 0)$			
	$\begin{array}{cccc} B: & 1+0 & \tau & 0+1 \\ S: & 0+0 & \tau & 1+0 \end{array}$			
	correct S equation gets 2, $0 + 0 = -1 + 0$ gets 1;	(2)		
	not possible because S does not balance; 'not possible' unsupported gets zero	(2)	[4]	
				10
			1	

(a)	(i)	load = 5000 x 9.81 (accept mg) k = 5000 x 9.81/ 0.04		[1]	[1]
	(ii)	f = 1/2π (1.2 x 10 ⁶ / 1.25 x 10 ³) f = 4.9(3) Hz (accept 4.98 or 5) (use of m = 5000kg: f = 2.4(7) Hz scores 1)		[1]	[1]
(b)	(i)	R = 50/ 12000 = 4.17 x 10 ⁻³		[1]	
	(ii)	P = 50 x 12000 = 600 kW ECF for R		[1]	
	(iii)	E = 15 x 420 x (1000 -20) E = 6.17 x 10 ⁶ J (accept 2SF or 1SF)		[1]	[1]
	(iv)	t = 6.17 x 10 ⁶ / 600,000 (ECF from iii) t = 10.3 s		[1]	[1]
(c)		Any two from: <u>conduction</u> through each <u>contact</u> <u>conduction</u> through <u>air</u> <u>convection</u> (in air) [1] <u>radiation</u> / <u>infra red</u> / visible <u>light</u> <u>rate</u> of loss increases with temperature (difference) [1] energy to heat water (in contacts) [1] <u>longer time</u> increases the energy losses	[1] [1] [1] [2]	[1]	[3]
(d)	(i)	Any two from: cross-sectional area is increased 4 times resistance is decreased 4 times R = pl/A	[1]	[1] [1] [2]	
	(ii)	maximum of 3 marks power (accept current) is increased 4 times mass is increased 4 times so time unchanged	[1] [1] [1]	[3]	
(d)	(ii)	spring constant increased/ smaller extension/ stiffer spring natural frequency will increase.		[1]	[1]
			[Total	: 20]	

Mark Scheme 2825/05 June 2007

1

Mark Scheme		Unit Co	Jnit Code		Ses	Session			Version
Page	1 of 5	2825			June	e	2007		
Questi	ion 1			Expe	cted An	swers			Marks
(a)	<u>Amplitude</u> Modulated transmission (do not accept AM)								
(b)	The 50 kHz carrier is modulated with a pure sine wave only So no information is being transmitted Pure sine waves have no harmonic content								
	Pure sine wa	ves are	excruci	iating to	listen t	o(or wtte)ai	ny two	11	
(C)	Bandwidth	=	10	1	kHz	1			
(d)	Waveband	=	Long	Wave	or	Low Freque	ncy	1	
	From 30 kH	z	to	300 k⊦	łz			1	
(e)	Any symmetr	ical AM	wavefo	orm draw	'n	1			
	RF period sh	own to b	e 1 / 50	0 kHz		1			
	RF period dra	awn as 2	20 µs			1			
	AF period she	own to b	e 1 / 5	kHz		1			
	AF period dra	awn as 2	200 µs			1			
(f)	Drawing of a	ny carrie	r line w	vith two s	sidebar	nd continuums	s d not again		1
	Carrier centre	ea on 50	кнz an	ia sideba	anas sy	mmetrical an	a not squa	are	(1)
	Any informati Hence sideba	on / mus and will r	sic will (not be a	contain a a single	a broad line but	I range of frect a continuum	uencies of freque	ncies	

The peaks in the sidebands are constantly changing with time any one ①

2825/05

Mark Scheme		Unit Code		Sess	sion	Year		Version	
Page 2 of 5		2825		June	9	2007			
Ouest			Euro e etc		1				Marka
Questi	on 2		Expecte	ed Answers					Marks
(a)	(i)	Signal-to-	noise ratio =	ratio of s	ignal p	power to noise po	ower	1	
	(ii)	Decrease	<u>s</u>					1	
		because	power de	creases with c	listanc	e (ie attenuation))	0	
			noise pov	wer remains m	ore or	less constant	either	(1)	
(b)	(i)	signal-to-	noise ratio =	28 =	:	10 lg P ₁ / P ₂		1	
				=	:	10 lg P ₁ / 0.24 x	10 ⁻⁶	1	
		received s	signal power P	1 =	:	1.51 x 10 ⁻⁴		1	
				=	:	151 µW			
	(ii)	Attenuatio	on in cable	=	:	65 x 0.32		1	
				=	:	20.8 dB		1	
	<i>/</i>	A.() (*		00.0			4.0-4	0	
	(111)	Attenuatio	n = d signal nowe	20.8 = rP₄ =		10 lg P ₁ / 1.51 X 0.0182	10 '	(1)	
				=	:	18.2 mW		1	
		(allow 1/2	if answer 20	0.8 = 10 log 1	50 / P	so P = 1.26 x 1	0 ⁻⁶)		
(c)	(i)	Laser						വ	
(0)	(ii)	Monomor	le fibres are tir	w and only las	ers ca	n iniect sufficient	nower	0 1	
	(1)	(allow eith or	ner monochr lasers ca	omatic laser re n be switched	educes on and	chromatic distor d off at high frequ	tion uency)	U	
(d)	(i)	Analogue	signal is a	analagous to p	hysica	al property which	generated it		
		-	signal va	ries continuou	sly with	h time between ty	wo limits	1	
		Digital	signal is a	a coded repres	sentati	on of an instanta	neous samp	le	
			signal is	composed of c	only tw	o voltage levels		1	
	(ii)	Digital can be perfectly regenerated (because noise can be removed) (do not accept "digital signals do not suffer from noise") Digital can have extra codes added to check for errors Digital can be encrypted to ensure only authorised users have access Digital can have a greater dynamic range Digital can be companded to ensure efficiency in transmission Digital can be easily stored in memory Digital can be easily controlled by computers Digital allows time-division multiplexing							
		uu nut al	iow any consid		pense			U	

Mark Scheme	Unit Code	Session	Year	Version
Page 3 of 5	2825	June	2007	
Question 3	Expected Answers			Marks

- (a) Position of North Pole indicated at right angles to equator / satellite orbit
 (position of pole must allow satellite to be in a reasonable loop/circle around resulting equator)
- (b) Satellite requires power from somewhere so sun (if no RTG used) is only source Solar panels are not always in direct sunlight (sometimes in Earth's shadow) Batteries are required to maintain steady power consumption

 (allow marks even if battery not explicitly mentioned but implied in answer) (any two)
 (1)

(C)	Input power to solar panel		=	1.6 x 1	0 ³ x 4	1.5	1
			=	7200 V	V		1
	Efficiency		=	1080 /	7200		
			=	15 %			1
(d)	Power into footprint	=	0.9 x	750	=	675 W	1
	Power received by dish	=	{π(1.	1 ÷ 2) ²	/π(1	$200 \times 10^3 \div 2)^2$	x 675①
		=	{ 1.1 ²	/ 1200	000 ² }	x 675	1
		=	5.67 x	10 ⁻¹⁰ V	V		1

(if 750W used instead of 675W then answer is 6.3×10^{-10} so allow 3/4) (if there is a 10^6 error because km have been used for m then allow up to 3/4) (in a poor answer, allow a mark for Area of dish = 0.95 m² or for Area of footprint = $1.13 \times 10^{12} \text{ m}^2$)

(e) Carrier frequencies used are in the order of GHz. 1 The TV station transmits from (a parabolic dish) Earth directly to satellite and the satellite picks up this signal, amplifies it and transmits it back to Earth (1) The satellite changes the carrier frequency of this signal (eg from 14 GHz to 11 GHz) In order to avoid feedback / interference / swamping incoming signal with outgoing 1 (f) Satellite system covers huge area with one single transmitter on one carrier frequency Terrestrial system would require very large number of transmitters Each operating on slightly different frequencies So uses bandwidth much more efficiently Satellite reception is not affected by mountainous terrain (or wtte) Satellites use higher frequency wavebands so more information/channels can be carried

Satellite system is more cost effective (or wtte) any two ① ①

Mark Sche	me	Unit Code		Session	Year	Version
Daga 4 of	F	2025		luno	2007	
Faye 4 01	5	2023		Julie	2007	
Question	4	Expected Answ	vers			Marks
(a) (i)	Invertir	a amplifier correctly dra	wn			(1)
() (-)	(non-in	verting (+) input connect	ted to 0	V line with input and	feedback resistor	s correctly
added)						
	Microp	none correctly wired				1
	(one er	id connected to input res	sistor oth	er connected to <u>0V</u>	line)	0
	Op-am	p output connected to Li	=D via re	esistor		(1)
	I ED bi	ased permanently on				1
	(eg and	ode to +15V line or cath	node to -	15V line or summir	g amp used)	U
	τ.Ο				,	
(ii)	Maxim	im voltage gain of ampli	fier ≈	1/2 Vacturation / 30	mV	
(")	(if biase	ed, eg with summing am	plifier, so	that output only ev	er swings positive)	
			~	7.5 / 0.03	× 250	1
	(but if b	biased via LED cathode	to -ve rai	I then output can sw	ing both +ve and -v	ve)
			~	15 / 0.03	= 500	
(iii)	Ratio o	f amplifier resistors R _f / I	R _{in} equal	to voltage gain		1
	The cu	rrent limiting LED resisto	or ≈	{ [15 or 30] - 2	} / 10 mA	1
			~	1300 Ω or 2800	Ω	
	"		≈	allow 1 to 3 k Ω	1	1
	(ignore	the omission of the 2V s	switch-or	n voltage of the LED)	
(iv)	The mi	crophone produces volta	age wobb	oles around 0V		
	The sm	all voltage wobbles are	amplified	d by the amplifier		1
	The LE	D is biased on at all time	es			
	So a w	obbly light intensity is tra	ansmittec	down the fibre with	out distortion	1
	(allow 7	1/2 for a decent answer	which do	es not involve the L	=D blas on)	
(b) (i)	Any ph	otodiode symbol correct	ly drawn	(but allow LDR))	1
., .,	Photod	iode in reverse bias and	resistor	in series across pov	ver supply	(1)
	(or with	anode of photo diode li	nked via	feedback resistor to	the -ve rail)	
	Capaci	tor connected to link jun	ction of c	liode to op-amp inpu	it resistor	1
	(allow o	capacitor connected in s	eries to l	oudspeaker to remo	ve dc bias)	
	Ratio o	f amplifier resistors R _f / I	R _{in} equal	to voltage gain of (>) about 100	1
	Loudsp	eaker connected to outp	out of am	plifier and to 0V (igr	ore series resistor	s) ①
(ii)	Wobbly	light intensity from fibre	has a d	c bias which is remo	ved by capacitor	1
()	The ac	wobble or speech is am	plified to	produce sound in s	peaker	1

2825/05

Mark Scheme	Unit Code	Session	Year		Version	
Page 5 of 5	2825	June	2007			
Question 5	Expected Answers				Marks	
Surface waves	VLF LF and MF ie waves with carrier frequencies below 3 MHz. ①					
	(Large wavelength waves)					
	Follow curvature of Earth by diffraction					
	(do not allow "travels along the					
Sky waves	HF waves with frequencies between <u>3 MHz to 30 MHz</u>					
	Short waves reflect off ionosphere and surface of Earth					
	(Multiple reflections enable waves to travel all over Earth)					
Space waves	Any wave of frequency greater	than 30 MHz		1		
	(Small wavelength means very little diffraction is apparent)					
	And waves travel by line-of-sight					

(a)	(i)	load = 5000 x 9.81 (accept mg) k = 5000 x 9.81/ 0.04		[1]	[1]
	(ii)	f = 1/2π (1.2 x 10 ⁶ / 1.25 x 10 ³) f = 4.9(3) Hz (accept 4.98 or 5) (use of m = 5000kg: f = 2.4(7) Hz scores 1)		[1]	[1]
(b)	(i)	R = 50/ 12000 = 4.17×10^{-3}		[1]	
	(ii)	P = 50 x 12000 = 600 kW ECF for R		[1]	
	(iii)	E = 15 x 420 x (1000 -20) E = 6.17 x 10 ⁶ J (accept 2SF or 1SF)		[1]	[1]
	(iv)	t = 6.17 x 10 ⁶ / 600,000 (ECF from iii) t = 10.3 s		[1]	[1]
(c)		Any two from: <u>conduction</u> through each <u>contact</u> <u>conduction</u> through <u>air</u> <u>convection</u> (in air) [1] <u>radiation/ infra red/ visible light</u> <u>rate</u> of loss increases with temperature (difference) [1] energy to heat water (in contacts) [1] <u>longer time</u> increases the energy losses	[1] [1] [1] [2]	[1]	[3]
(d)	(i)	Any two from: cross-sectional area is increased 4 times resistance is decreased 4 times R = pl/A	[1]	[1] [1] [2]	
	(ii)	maximum of 3 marks power (accept current) is increased 4 times mass is increased 4 times so time unchanged	[1] [1] [1]	[3]	
(d)	(ii)	spring constant increased/ smaller extension/ stiffer spring natural frequency will increase.		[1]	[1]
			[Total:	20]	
Mark Scheme 2826/01 June 2007 2826/01

1	(a)	e.g. person i	n a car on a mo	otorway			{1}
		travelling wit	h constant velo	ocity (do not all	ow constant speed)		{1}[2]
		(1) for situati	on, (1) for deta	ail			
	(b)	(i) e.g. obje	ect travelling (a	t constant spee	d) in a circle		{1}
		(ii) e.g. pers	son in a car wh	ich is braking			{1} [2]
	(c)	e.g. ball at th	ne top of a verti	cal throw			{2}
		(1) for position	on (1) for zero l	horizontal veloc	ity		[2]
	(d)	e.g. idea of t	here being a to	rque or couple a	acting on it		{1}
		and rotating					{1}[2]
						ד]	otal : 8]
2.	(a)	Correct use	of excess temp	erature			{1}
		Value 22 \pm 2	1 °C				{1}
		Average of a	it least two read	dings OR over t	wo half-lives		{1}[3]
		(Values you					
		temperature	temperature	half temperatu	re final temperature	time	
		/°C	excess /°C	excess /°C	/°C	/min	
		95	80	40	55	22.0 - 0 = 22.0	0
		85	70	35	50	26.4 - 3.8 = 2	2.6
		75	60	30	45	31.4 - 8.6 = 2	2.8
		65	50	25	40	37.0 - 14.6 =	22.4
		55	40	20	35	44.0 - 22.0 =	22.0
		Allow 1	for 94 – 23.5 ta	akes 66 min ther	refore average = 33 mi	n)	
	(b)	e.g. ½ = exp	ο(-22 λ)				{1}
		ln 0.5 = -22 ን	l				{1}
		$\lambda = 0.032$	OR		= 5.3 x 10 ⁻⁴		{1}
		unit: minute ⁻¹	¹ OR		unit = s ⁻¹		{1}[4]
	(c)	e.g. wind acro	oss surface,		insulation around liqui	d/container	
		surface area			humidity		
		stirring	noles				
		specific heat	capacity of liqu	ıid	temp. of liquid/temp or	f surroundings	
		3 required fro			{3}[3]		
	(d)	$(\Delta)Q = mc(\Delta)$	T with clear kn	owledge of wha	t the symbols mean		{1}
		= 0.160	x 4200 x (71 to	72)			{1}
		= 48000) (J)				{1}[3]
						[To	tal : 13]

2826/01

3.	(a)		DO NOT allow answers which answer the question "Why are power stations	S
			near coal mines"	
			e.g. infra structure in place	
			cost of re-location	{2}[2]
	(b)		e.g pollution – dirty atmosphere	
			smell – cleaning gases still leads to an acidic smell	
			noise – running day and night	
			(1) for each fact x2+ (1) for valid comment	{3}[3]
	(c)		plenty of cooling water available	{1}[1]
	(d)	(i)	knowledgeable use of $P = V \times I$	{1}
			= 11 000 V x 800 A	
			= 8 800 000 (W)	{1}[2]
		(ii)	knowledgeable use of V = I x R	{1}
			= 800 x 5 = 4000 (V)	{1}[2]
		(iii)	11 000 – 4000 = 7000 (V)	{1}[1]
		(iv)	7000 V x 800 A	{1}
			= 5 600 000 (W)	{2}[2]
		(v)	5.6 MW / 8.8 MW OR 7000 V / 11 000 V	{1}
			= 0.64 = 64%	{1}[2]
	(e)		working from power lost in the cables	{1}
			power of 2 MW lost in 5 Ω	{1}
			$2 \times 10^6 = l^2 \times 5$ $l = \sqrt{400\ 000} = 632 \text{ A}$	{1}
			Allow the following (2) marks as e.c.f from incorrect current	
			$1.0 \times 10^8 = V \times 632$	{1}
			V = 1.0 x 10 ⁸ / 632 = 158 000 V	{1} [5]
				[Total : 20]

4	(a)	one (or more) electrons removed (or added) to an atom	{1}[1]
	(b)	E = hf = hc/ λ together with knowledge of symbol meaning	{1}
		$=\frac{6.63x10^{-34}x3.00x10^8}{238x10^{-9}}$	{1}
		$= 8.36 \times 10^{-19} (J)$	{1}[3]
	(c)	frequency of UV is greater than frequency of light OR alternative statement in terms of wavelength.	
		so photon energy of visible light is less than photon energy of UV PLUS one of the idea of conservation of energy	{1}
		it is not possible for a low energy photon to give a high energy photon	
		this is a one to one process	{1}[2]
	(d)	E = V/d and power of 10 correct for d	{1}
		= 30/0.00020 = 150 000	{1}
		V m ⁻¹	{1}[3]
			[Total : 9]
5.	(a)	P.E. at top = 80 x 9.8(1) x 150 = 118 000 (J)	{1}
		K.E. at bottom and at top = 0	{1}
		Elastic P.E. at top = 0, at bottom = P.E. at top for ecf = 118 000 J	{1}[3]
	(b) [1]	24 N m ⁻¹ x 100 m = 2400 N	{1}
	(c)	elastic P.E. is area under F-x graph	{1}
		graph is a straight line so energy is area of triangle	{1}
		elastic P.E. = $\frac{1}{2} x kx x x = (\frac{1}{2}kx^2)$	{1}[3]
	(d)	loss of P.E. = 100 x 9.8(1) x 150 = 147 000 J	{1}
		gain of elastic P.E. = ½ x 26.7 x 105 ² = 147 000 J	{1}[2]
	(e)	idea that a given (unit) extension for a shorter rope requires a greater force	{1}[1]
			[Total: 10]

Mark Scheme 2826/03 June 2007

Question 1

(a) (ii)	Value of V_0 , must be between 50mV and 500mV. If POT error here due to	1
	misreading of scale, do not penalise again.	
(b) (ii)	Readings	3/2/1/0
	Write the number of readings as a ringed total by the results table.	
	6 sets of readings in the table scores one mark.	
	Values of n must be in range, up to at least n = 17, and reasonably spaced	
	$(\Delta n \ge 2)$, one mark.	
	Check a value for $In(V)$. Underline checked value and \checkmark if correct, at least 2	
	d.p., one mark. Log values do not score this mark.	
	If minor help has been given then -1 . Excessive help given then -2 .	
	Please indicate when help has been given to a candidate by writing SR at	
	the top of the front page of the candidate's script. Also, please indicate the	
	type of help that has been given by writing a brief comment by the table of	
	results.	
(b) (ii)	Repeat readings of voltage.	1
	This mark not to be awarded if all repeats are identical.	
(b) (ii)	Column headings (voltage only)	1
	There must be some distinguishing mark between the quantity and its unit.	
	E.g.V/mV, V(mV), V in millivolts, are OK, but not (V)mV, V _{mV} , or just	
	"millivolts"	
(b) (ii)	Consistency of raw readings	1
	Applies to V only. All values must be to at least the nearest mV (≤ 10mV if	
	analogue meter has been used). No trailing zeros.	
	Indicate using $\checkmark_{\rm C}$ at the foot of the column if correct.	
(b) (ii)	Quality of results	1
	Judge by scatter of points about line of best fit. 5 trend plots needed.	
	Allow a very slight curve at n = 2 end.	
(c) (i)	Axes.	
	Each axis must be labelled with a quantity. Ignore unit. One mark for each	2/1/0
	axis.	
	Scales much be such that the plotted points occupy at least half the graph	
	grid in both the x and y directions.	
	Do not allow more than 3 large squares between scale markings.	
	Do not allow awkward scales (e.g. 3:10, 6:10, 7:10, 8:10 etc.).	
	Axes wrong way round. Penalise here, then ecf.	
(c) (i)	Plotting of points.	1
	Count the number of plots on the grid and write this value by the line and	
	ring it. Do not allow plots in the margin area.	
	The number of plots must correspond with the number of observations.	
	Do not award this mark if the number of plots is less than the number of	
	observations.	
	Check one suspect plot. Circle this plot. Tick if correct.	
	If incorrect then mark the correct position with a small cross and use an	
	arrow to indicate where the plots should have been.	
	Allow errors up to and including half a small square.	

(-) ()		
	There must be a reasonable balance of points about the line of best fit. If one of the points is a long way from the trend of the other plots then allow this plot to be ignored when the line is drawn. The mark can be awarded if the line of best fit is 'reasonable' but not quite right. This mark can only be awarded if a straight line has been drawn through a linear trend.	
(c)(ii)	Measurement of gradient. Read-offs must be accurate to half a small square and the ratio must be correct, one mark. Please indicate the vertices of the triangle used by labelling with Δ . The hypotenuse must be greater than half the length of the drawn line, one mark. Negative value given for negative gradient, one mark.	3/2/1/0
(c) (ii)	 y-intercept Check the read-off. Accept correct substitution from a point on the line into y = mx + c. No need to check calculation, but algebraic manipulation must be correct, with sensible answer. 	1
(d)	Ln V = In A - Bn, or implied from the working.	1
(d)	Value of A (<u>from e^{y-intercept}</u>), allow 10 ^{y-intercept} if log has been used. Ignore unit.	1
(d)	Value of B (<u>from gradient</u>). B = - gradient. Ecf from (c) (ii).	1
(d)	SF in A and B. Allow 2 or 3 sf in both quantities.	1
(e) (i)	Micrometer screw gauge reading for microscope slide thickness t. Must be ±0.10 mm of SV. One mark. Raw values must be given to nearest 0.01 mm (or 0.001 mm if SV is to 0.001mm). One mark.	2/1/0
(e) (ii)	Percentage uncertainty in value of t. Sensible Δt (0.01mm, 0.02 mm), or half range, one mark. Correct ratio idea and 'x 100', one mark. Ignore final calculated answer. Insist on correct method of working.	2/1/0
(f)	Problem stated or implied: find value of t when voltage = $V_0/2$ or A/2, since A ought to equal V_0 . One mark. Substitute in formula InV = InA - Bn to find n. (OR In(0.5) = -Bn). Allow ecf. Check calculation. One mark. Thickness = t x n. One mark, only if correct method for n. Final answer must be sensible.	3/2/1/0
(g)	Would a single piece of glass be equivalent to a pile of slides of the same thickness? Answer: no, because with the slides much energy is lost by internal reflections, (and/or reflections between the slides).	1

[Total 28]

Question 2

(a) (i)	Raw time > 5s, recorded to 2 dp, one mark. T correct (= t/n), one mark. Do not credit miscounting of n.	2/1/0						
	I should be about 1 second.							
(a) (ii)	Justification for number of sf in T. i.e. same sf as t (i.e same sf as raw data), or a sensible reference to human reaction time. Ignore references to dp. Answers must be consistent with (a) (i).							
(b)	New value of T (< first value of T), one mark. 1							
(c)	T $\propto \sqrt{m}$ or $T^2 \propto m$ 2One mark for comparison of ratios, or calculation of k's.2One mark for conclusion that T $\propto \sqrt{m}$, or $T^2 \propto m$ (only if k values are within 10% of each other).2							
(d)	 Evaluation of procedure. Relevant points must be underlined and ticked. One mark for each. Some of these might be: P = problem S = solution P Raw time too small/one T reading not enough S Time more oscillations S Use correctly positioned motion sensor (but <u>not</u> videoing the mass). S Repeat readings, and <u>average</u> for a final value of T. P Problem with pendulum behaviour S Use small amplitude S Take care not to give sideways impulse on launch (do not allow tubes). S Use different masses, must explain why this would work P Human error in timing / hard to see beginning or end of oscillation Do <u>not</u> credit difficulty in starting watch and oscillation together. S Use a marker (in any position). S Place (fiducial) marker at <u>centre</u> of oscillation P Two readings of T and m are not enough S Use a greater range of values of m and plot a <u>graph</u> S This graph should be of T² against m, or T against √m, (and be a straight line). Do not allow draughts, closing windows, etc. Do not allow vague "light gates", "use a computer", unless further clarification is given. Allow other relevant points (8 maximum). 							
	2 marks are reserved for quality of written communication (SPAG)	2/1/0						

16 marks maximum to be awarded

June 2007

Mark Scheme – Plan – Radioactivity

A1	Labelled diagram showing sensible layout of equipment., including source, Al, GM tube	1
A2	Workable method, measure Al thickness t and count-rate; alter t and measure count-rate again until a set of several readings is obtained. Count-rate should be measured or averaged for at least a minute, or repeated ratemeter use.	1
A3	(Sr90), because of <u>long half-life.</u>	1
B1	Expected results in the form of thickness/count-rate graph (or In count-rate). Allow exponential graphs or straight line log graphs. Line must touch y-axis. (See D).	1
B2	Micrometer used to measure AI thickness t	1
B3	Measurement of background radiation and subtract from count-rate.	1
C1	Safety precautions. <u>Tongs or gloves</u> . Do not credit goggles. Don't award this mark if precautions are over the top i.e. lead screens everywhere etc.	1
C2	Factory environment. Electrons (β particles) are deflected (do not allow attracted) by stray magnetic fields, so install magnetic shield of iron/steel. Not Faraday cages.	1
D	Good further detail/research of material. Examples of creditworthy answers might be: Labelled diagram of GM tube / further details Source should be collimated (explain or <u>made clear</u> in diagram). Awareness of random source fluctuations Evidence of preliminary work Awareness of sensible range of aluminium thicknesses, perhaps 0.1mm to at the most 5 mm. Log or In version of calibration graph, curved, showing secondary emission section. Awareness that some sources also emit α and γ rays (detail needed). Awareness of energy spectrum of Sr90. Use of soft iron/µ metal for shielding. Allow other materials if references given. Show on graph, and explain, secondary emission.	4/3/2/1/0
R	Good further detail/research of material. Examples of creditworthy answers might be: Labelled diagram of GM tube / further details Source should be collimated (explain or <u>made clear</u> in diagram). Awareness of random source fluctuations Evidence of preliminary work Awareness of sensible range of aluminium thicknesses, perhaps 0.1mm to at the most 5 mm. Log or In version of calibration graph, curved, showing secondary emission section. Awareness that some sources also emit α and γ rays (detail needed). Awareness of energy spectrum of Sr90. Use of soft iron/ μ metal for shielding. Allow other materials if references given. Show on graph, and explain, secondary emission. Underline and tick each relevant point in the body of the text. The ticks must have a subscript showing <u>which</u> marking point has been awarded (e.g. \checkmark_{A2}). Evidence of research of material. More than one source (books or internet), with page numbers, for 2 marks. Two vague sources, one mark. One vague source, no marks.	2

16 marks for this question

Summary of shorthand notation which may be used in annotating scripts:

- SFP Significant figure penalty
- ECF Error carried forward
- TE Transferred error
- AE Arithmetical error
- POT Power of ten error
- NV Not valid
- NR Not relevant
- GAP Insufficient scale markings on an axis
- NBL Not best line
- FO False origin
- NE Not enough
- NGE Not good enough
- BOD Benefit of the doubt
- R Point repeated (no further credit)
- NA Not allowed
- SV Supervisor's value
- SR Supervisor's report
- OOR Candidate's value is out of range
- wtte Words to that effect
- eeoo Each error or omission
- CON Contradictory physics not to be credited
- $\checkmark \bigtriangleup$ Used to show that the size of a triangle is appropriate (gradient calculation)
- ✓A3 Used to show the type of mark awarded for a particular piece of work (in plan)
- ✓C Used to show that the raw readings are consistent
- ✓SF Used to show calculated quantities have been given to an appropriate number of significant figures
- Piece of work missing (one mark penalty)
- ^^ Several pieces of work missing (more than one mark penalty)
- \leftrightarrow Scale can be doubled in the x-direction
- Scale can be doubled in the y-direction

V/mv	n	In V
430	0	6.064
418	2	6.035
408	4	6.011
398	6	5.986
389	8	5.964
378	10	5.935
371	12	5.916
360	14	5.886
353	16	5.866
347	18	5.849
341	20	5.832

Thickness of slide = 1.17mm

Gradient = -0.012; B = 0.012

Intercept = 6.058; A = 428 (v)

When V = V0/2, equation leads to n = 58

hence thickness necessary to halve brightness = 58 x 1.17 = 68mm

Advanced GCE Physics 3883/7883 June 2007 Assessment Series

Unit Threshold Marks

	Unit	Maximum Mark	а	b	С	d	e	u
2821	Raw	60	45	39	33	28	23	0
	UMS	90	72	63	54	45	36	0
2822	Raw	60	47	42	37	32	27	0
	UMS	90	72	63	54	45	36	0
2823A	Raw	120	93	82	71	61	51	0
	UMS	120	96	84	72	60	48	0
2823B	Raw	120	93	82	71	61	51	0
	UMS	120	96	84	72	60	48	0
2823C	Raw	120	88	79	70	61	52	0
	UMS	120	96	84	72	60	48	0
2824	Raw	90	60	53	46	39	33	0
	UMS	90	72	63	54	45	36	0
2825A	Raw	90	65	59	53	47	41	0
	UMS	90	72	63	54	45	36	0
2825B	Raw	90	61	54	48	42	36	0
	UMS	90	72	63	54	45	36	0
2825C	Raw	90	68	61	55	49	43	0
	UMS	90	72	63	54	45	36	0
2825D	Raw	90	59	52	45	39	33	0
	UMS	90	72	63	54	45	36	0
2825E	Raw	90	64	57	50	43	37	0
	UMS	90	72	63	54	45	36	0
2826A	Raw	120	89	79	69	60	51	0
	UMS	120	96	84	72	60	48	0
2826B	Raw	120	89	79	69	60	51	0
	UMS	120	96	84	72	60	48	0
2826C	Raw	120	86	78	70	62	55	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
3883	300	240	210	180	150	120	0
7883	600	480	420	360	300	240	0

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3883	20.0	37.6	54.7	70.7	83.8	100.0	7263
7883	27.2	49.6	69.8	84.6	95.3	100.0	5774

For a description of how UMS marks are calculated see; <u>http://www.ocr.org.uk/exam_system/understand_ums.html</u>

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

