MARKSCHEME: 2823 Wave Properties January 2006 – FINAL VERSION

1.	(a)	ratio of sini/sinr is constant (WTTE) (accept sini/sinr = n or RI) (do not accept ratio of speeds)		B1	
		incident ray, refracted ray (and normal) all lie in the same plane (allow 'angles of')		B1	[2]
	(b) (i)	<i>correct path through the prism showing:</i> refraction towards normal on entry refraction away from normal on exit		B1 B1	[2]
		B			
	(ii)	ray of light slows down (allow changes speed) as it enters glass		B1	[1]
	(iii) Recall correct	of n =sini/sinr t substitution \Rightarrow 1.47 = sin 50/sinr	C1	C1	
	sinr = s	sin50/1.47 \Rightarrow r = 31 ^o (31.4) (allow 31.6 or 32)	A1	[3]	
	(iv) angle ({ignore	of incidence must be greater than (or = to) critical angle e any reference to density of media}	B1	[1]	
	(v) correct	t substitution into n=1/sinC \Rightarrow e.g. sinC = 1/1.47	۸1	C1	
	<i>⇒</i> sinc	$-0.000 \rightarrow 0 - 40 (42.3)$		[4]	

[Total = 11]

2. (a) (i)	Recall of n= c_i / c_r {or in words) $\Rightarrow c_r = (3 \times 10^8)/1.52 = 1.97 \times 10^8 \text{ ms}^{-1}$ (allow 2×10^8)	C1 A1	[2]
(ii)	Use of speed = distance/time t = $3000/1.97 \times 10^8 = 1.52 \times 10^{-5} \text{ s}$	C1 A1	[2]
	{allow ecf from (i)}		
(b)	meaning of multipath dispersion: e.g.: rays (or pulses) take different paths (WTTE)	- B1 - B1 B1	[3]

allow any valid method of reducing multipath dispersion, but expect:		
use monomode fibre (WTTE)		B1
so that most rays follow the same path	B1	[2]

{also allow co reducing amo	re/cladding interface has very large critical angle (WTTE) ount of TIR	B1	B1}	
		[Total	= 9]	
3. (a) (i) wave {max o	sources that have a constant phase difference (WTTE) of 1 mark for sources have same frequency/wavelength/in phase C	B2 1}		
(ii)	sum of <u>displacements</u> (= resultant displacement) (WTTE) (no marks for reference to amplitude)	B1	[1]	
(b) (i) (NB answers marks only)	constructive interference/waves in phase for maxima OR destructive interference/waves 'out of phase'	C1 A1 A1 score m	[3] aximun	n of 2
(ii) rec {expre correc	all of x = $\lambda D/a$ ssed in any form; allow unusual symbols if correctly identified} t substitution: x = (3.0 x 50)/6	C1 A1		
	x = 25 cm	A1	[3]	
(iii) microv {do not	vaves <u>vibrate/oscillate/displaced</u> in <u>one plane</u> (WTTE) allow travel/propagate in one plane)		B1.	
signal	decreases to zero (WTTE)		B1	[2]

[Total = 11]

4. (a)	waves (travel out from centre and) are reflected (WTTE) interference/superpositioning occurs (WTTE)	B1 B1	[2]
(b) correct shape drawn N labelled at <u>both</u> ends and A in the middle		M1 A1	[2]
(c)	wavelength = 0.5 x 2 = 1.0m {allow ecf from (b)}	B1	[1]

[Total = 5]

5 (a)	the spreading out (WTTE) of waves	B1		
	when they pass through a gap OR pass a barrier edge	B1	[2]	
(b) (i)	semicircular wavefronts leaving the gap		B1	
	clearly shown (at least 3 waves needed) – judged by eye		B1	[2]

(ii)	LESS diffraction would occur – shown or stated	B1 B1	[2]
(iii)	MORE diffraction for SOUND Wavelength of sound > wavelength of light (WTTE) Valid comparison of wavelength of light or sound with doorway e.g.	B1 B1	
	wavelength of light is very small compared to door (WTTE)	B1	[3]

[Total = 9]