FINAL MARK SCHEME 2821 FORCES AND MOTION

JANUARY 2006

Mark Scheme	Unit Code	Session	Year	Version
Page 1 of 6	2821	JANUARY	2006	FINAL
Question 1	Expected Answers			Marks
(a)(i)	speed = d / t			C1
	= 24 / 55			
	= 0.436 (m s	⁻¹) allow 0.44 do not allow one sf	:	A1
(ii)	kinetic energy = ½ n	n v ²		C1
	= 0.8	5 x 20 x (0.436) ²		
	= 1.9	9 (J) note ecf from (a))(i)	A1
(iii)	potential energy = m	ng h		C1
	= 2	20 x 9.8 x 4		
	= 7	784 (J)		A1
	penalise the use of	g = 10		
(b)(i)	power = energy / tim	ne or work done / time	•	C1
	= (15 x 784) note ecf from (a)(iii)	/ 55		
	= 214 (W)			A1
(ii)	needs to supply children with kinetic energy air resistance friction in the bearings of the rollers / belt total mass of children gives an average mass of greater than 20 kg		B1 B1 B1 B1 Max B2 Total: 10	

Question 2	Expected Answers	Marks
2 (a)(i)	velocity = displacement / time or rate of change of displacement	B1
(ii)	acceleration = <u>change in</u> velocity / time or rate of <u>change of</u> velocity	B1
(b)(i) 1.	distance / displacement	B1
2.	acceleration	B1
(ii)	use of area of squares under the line	C1
	value for the distance in the range 0.45 to 0.55 (cm) (use of a triangle area scores 1/2 [0.40 cm]) (do not allow 1sf)	A1
(iii)	acceleration is a maximum at A / decreases from A to 0.2 s	B1
	acceleration goes to zero at 0.2 s acceleration is maximum at B / opposite direction at B /	B1
	decelerates from 0.2 s to B / acceleration increases from 0.2 to B	B1 MAX 2
(v)	acceleration = [(-)3.8 - (+ 3.6)] / 0.3	C1
	= 24.7 (cm s ⁻²)	A1
	allow 24 to 25 for 2 marks and 23 to 26 for one mark	Total: 10

Question 3	Expected Answers	Marks
3 (a)(i)	pressure = force / area	B1
(ii)	moment = force multiplied by the <u>perpendicular</u> distance (from the line of action of the force) to the <u>pivot</u>	B1
(b)(i)	force drawn vertically upwards at plunger	B1
	force drawn vertically at H	B1
(ii)	20 x 500 / force on Plunger x 120 (one correct moment stated)	B1
	Plunger force x 120 = (20 x 500)	B1
	Plunger force = 83(.3) (N)	A0
(c)(i)	pressure = force / area	
	$= 83 / 4 \times 10^{-3}$	C1
	= 20800 (Pa)	A1
(ii)	decrease area of plunger / decrease distance H to plunger / increase F / increase length of arm	B2 MAX 2
		Total: 10

Question 4	Expected Answers	Marks
4 (a) (i) 1	mass = 360 / 9.8 36.7 (kg) (allow 2sf)	B1
2	density = mass / volume	C1
	$= 36.7 / 4.7 \times 10^{-3}$	
	= 7.8×10^3 unit kg m ⁻³	A1 B1
(a)(ii)	right angled triangle with an additional correct angle marked	M1
	set of correct force labels and correct arrows	A1
	algebra shown or scale given	C1
	tension = 270 (N) or value in the range 255 to 285 (N)	A1
(b)(i)	tension is a vector / has magnitude and direction	B1
	direction involved in addition / the tensions or ropes act in different directions	B1
(ii)	sum =270 sin37 + 360 sin53	B1
	=162.5 + 287.5 (or one mark each for values of 162.5 and 287.5 seen)	B1
	= 450 (N)	A0 Total: 12

Question 5	Expected Answers	Marks
5 (a)(i)	Stress = force / area	C1
	force = stress x area	
	$= 180 \times 10^{6} \times 1.5 \times 10^{-4}$	
	= 27000 (N)	A1
(ii)	Y M = stress / strain	C1
	= $180 \times 10^6 / 1.2 \times 10^{-3}$ or using the gradient	C1
	$= 1.5 \times 10^{11} \text{ N m}^{-2}$	A1
(b)	brittle elastic/ graph shown up to elastic limit obeys Hooke's law / force α extension / stress α strain no plastic region	B3 max 3
		Total: 8

Question 6	Expected Answers	Marks
6 (a)	road surface / conditions	
	brake system	
	tyre surface / tread	
	speed of car	
	mass gradient of road	MAX B2
	gradient of road	IVIAA DZ
	Explanation to include the affect on the acceleration / force	
	(and hence the braking distance)	MAX B2
	,	
(b)	crumple zone	
	seat belts	
	airbag	
	protective cell / side impact protection	MAX B2
	explanation to include increase in time / distance of stop	
	decreases force for crumple zone or airbag /	
	absorbing energy (safely) for crumple zone	
	seat belt restrains /prevents collision with steering wheel /	
	windscreen	MAX B2
QWC	SPAC (loss than four arrors)	B1
MAAC	SPAG (less than four errors) use of technical language	B1
	use of technical language	
		Total: 10