MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	43

Section A

1	(a)	(i) weight = GMm/r^2 = $(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^6)^2$ = 5.20 N	C1 C1 A1	[3]
		(ii) potential energy = $-GMm/r$ = $-(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^{6})$ = $-1.77 \times 10^{7} \text{ J}$	C1 M1 A0	[2]
	(b)	either $\frac{1}{2}mv^2 = 1.77 \times 10^7$ $v^2 = (1.77 \times 10^7 \times 2)/1.40$ $v = 5.03 \times 10^3 \text{ ms}^{-1}$ or $\frac{1}{2}mv^2 = GMm/r$ $v^2 = (2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23})/(6.79 \times 10^6/2)$ $v = 5.02 \times 10^3 \text{ ms}^{-1}$	C1 C1 (C1) (C1) (A1)	[3]
	(c)	 (i) 1/2 × 2 × 1.66 × 10⁻²⁷ × (5.03 × 10³)² = 3/2 × 1.38 × 10⁻²³ × T T = 2030 K (ii) either because there is a range of speeds some molecules have a higher speed or some escape from point above planet surface some initial potential operation is higher 	C1 A1 M1 (M1) (A1)	[2]
2	(a)	temperature scale calibrated assuming linear change of property temperature neither property varies linearly with temperature	(AT) with B1 B1	[2]
	(b)	(i) does not depend on the property of a substance	B1	[1]
		(ii) temperature at which atoms have minimum/zero energy	B1	[1]

(c)	(i)	323.15 K	A1	[1]
	(ii)	30.00 K	A1	[1]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9702	43	
3	(a)	accel and i	leration proportional to displacement/distance from fixed in opposite directions/directed towards fixed point	point	M1 A1	[2]
	(b)	ener	gy = $\frac{1}{2}m\omega^2 x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1 × 10 ⁻⁵ J		C1 C1 A1	[3]
	(c)	(i) a	at maximum displacement above rest position		M1 A1	[2]
		(ii) a	acceleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g		C1	
		ç ,	$9.81 = (2\pi \times 4.5)^2 \times x_0$ $x_0 = 1.2 \times 10^{-2} \text{ m}$		A1	[2]
4	(a)	e.g. s s t t t t	storing energy separating charge blocking d.c. broducing electrical oscillations tuning circuits smoothing breventing sparks timing circuits			
		(any	two sensible suggestions, 1 each, max 2)		B2	[2]
	(b)	(i) - t	–Q (induced) on opposite plate of C₁ by <u>charge conservation</u> , charges are –Q, +Q, –Q, +Q, –Q		B1 B1	[2]
		(ii) t (total p.d. $V = V_1 + V_2 + V_3$ $Q/C = Q/C_1 + Q/C_2 + Q/C_3$ $1/C = 1/C_1 + 1/C_2 + 1/C_3$		B1 B1 A0	[2]
	(c)	(i) e	energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$		C1	
			$= \frac{1}{2} \times 12 \times 10^{-5} \times 9.0^{2}$ = 4.9 × 10 ⁻⁴ J		A1	[2]
		(ii) e	energy dissipated in (resistance of) wire/as a spark		B1	[1]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011 9702					
5	(a)	supp load	B1 B1	[2]			
	(b)	e.g. (any	powe grea <i>sen</i> :	er supplied on every half-cycle ter <u>average/mean</u> power <i>sible suggestion, 1 mark)</i>		B1	[1]
	(c)	(i)	redu	ction in the variation of the output voltage/current		B1	[1]
		(ii)	large eithe	er capacitance produces more smoothing er product <i>RC</i> larger		M1	
			or	for the same load		A1	[2]
6	(a)	unit (field force	of ma norn e per	agnetic flux density nal to (straight) conductor carrying current of 1 A runit length is 1 Nm ⁻¹		B1 M1 A1	[3]
	(b)	(i)	force (and	on particle always normal to direction of motion speed of particle is constant)		M1	
		l	mag	netic force provides the centripetal force		A1	[2]
		(ii)	mv²/ r =	'r = Bqv mv/Bq		M1 A0	[1]
	(c)	(i)	the r so th	nomentum/speed is becoming less ne radius is becoming smaller		M1 A1	[2]
		(ii)	1.	spirals are in opposite directions so oppositely charged		M1 A1	[2]
		:	2.	equal <u>initial</u> radii so equal (initial) speeds		M1 A1	[2]

Page 5			Mark Scheme: Teachers' version		Syllabus	Paper		
				GC	E AS/A LEVEL – October/November 2011	9702	43	
7	(a)	(i)	pack of el	et/qua	ntum of energy agnetic radiation		M1 A1	[2]
		(ii)	<u>minii</u>	<u>mum</u> e	nergy to cause emission of an electron (from su	ırface)	B1	[1]
	(b)	(i)	<i>hc/λ</i> c an	$= \Phi + dh exp$	E _{max} blained		M1 A1	[2]
		(ii)	1.	either or or $\Phi = 4.$	when $1/\lambda = 0$, $\Phi = -E_{max}$ evidence of use of <i>x</i> -axis intercept from graph chooses point close to the line and substitutes E_{max} into $hc/\lambda = \Phi + E_{max}$ 0×10^{-19} J (allow ±0.2 × 10 ⁻¹⁹ J)	s values of $1/\lambda$ and	d C1 A1	[2]
			2.	either	gradient of graph is 1/ <i>hc</i> gradient = $4.80 \times 10^{24} \rightarrow 5.06 \times 10^{24}$ $h = 1/(\text{gradient} \times 3.0 \times 10^8)$		C1 M1	
			(Allo (Do Plan	or w full c not all ck con	= $6.6 \times 10^{-4} \text{ Js} \rightarrow 6.9 \times 10^{-4} \text{ Js}$ chooses point close to the line and substitutes E_{max} into $hc/\lambda = \Phi + E_{\text{max}}$ values of $1/\lambda$ and E_{max} are correct within half a $h = 6.6 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js}$ credit for the correct use of any appropriate methow 'circular' calculations in part 2 that lead to stant that was substituted in part 1)	s values of 1/λ and square hod) the same value c	A1 (C1) (M1) (A1)	[3]
8	(a)	(i)	prob <u>per</u> ι	ability unit tim	of decay (of a nucleus) e		M1 A1	[2]
		(ii)	$\lambda t_{\frac{1}{2}} = \lambda = 2.$	= ln 2 ln 2/(3 1 × 10	0.82 × 24 × 3600) ^{−6} s ^{−1}		M1 A0	[1]
	(b)	A = 200 N =	×λΝ = 2 = 9.5	.1 × 10 × 10 ⁷) ⁻⁶ × N		C1 C1	
		ratio) = (= 2	(2.5 × ′ 2.6 × 1	10 ²⁰)/(9.5 × 10′) 0 ¹⁷		A1	[3]

	Page 6		6 Mark Scheme: Teachers' version		Paper	
			GCE AS/A LEVEL – October/November 2011	9702	43	
			Section B			
9	(a) any	value	e greater than, or equal to, $5 k\Omega$		B1	[1]
	(b) (i)	'posi	itive' shown in correct position		B1	[1]
	(ii)	V ⁺ V ⁻ > gree (allo	 = (500/2200) × 4.5 ≈ 1 V • V⁺ so output is negative on LED on, (red LED off) w full ecf of incorrect value of V⁺) 		B1 M1 A1	[3]
	(iii)	<i>eithe</i> gree	er V^+ increases or $V^+ > V^-$ in LED off, red LED on		M1 A1	[2]
10	quartz/p p.d. acro alternati crystal c when cry alternati	iezo- oss ci ng p. cut to ystal ng p.	electric crystal rystal causes <i>either</i> centres of (+) and (–) charge to <i>or</i> crystal to change shape d. (in ultrasound frequency range) causes crystal to vi produce resonance made to vibrate by ultrasound wave d. produced across the crystal	o move brate	B1 B1 B1 M1 A1	[6]
11	(a) sha con	rpnes trast:	ease with which edges of structures can be seen <u>difference</u> in degree of blackening between struct	ures	B1 B1	[2]
	(b) (i)	I = I/I ₀	$I_0 e^{-\mu x}$ = exp(-0.20 × 8) = 0.20		C1 A1	[2]
	(ii)	I/I ₀ I/I ₀ I/I ₀	= $\exp(-\mu_1 \times x_1) \times \exp(-\mu_2 \times x_2)$ (could be three terms = $\exp(-0.20 \times 4) \times \exp(-12 \times 4)$ = 6.4×10^{-22} or $I/I_0 \approx 0$)	C1 C1 A1	[3]
	(c) (i)	shar	pness unknown/no		B1	[1]
	(ii)	cont	rast good/yes <i>(ecf from (b))</i>		B1	[1]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9702	43	
12	(a)	e.g. <u>carri</u> so ir e.g. lowe so le e.g. UHF so m (any two	er frequencies can be re-used (without interference) hereased number of handsets can be used er power transmitters ess interference used hust be line-of-sight/short handset aerial sensible suggestions with explanation, max 4)		(M1) (A1) (M1) (A1) (M1) (A1) B4	[4]
	(b)	compute monitors relayed f switches	r at cellular exchange the signal power rom several base stations call to base station with strongest signal		B1 B1 B1 B1	[4]