Rewarding Learning ADVANCED General Certificate of Education 2015

Physics

Assessment Unit A2 2 assessing Fields and their Applications

[AY221] THURSDAY 4 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Quality of written communication will be assessed in Question **3**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

Question 8 contributes to the synoptic assessment required of the specification. Candidates should allow approximately 15 minutes to complete this question.

For Examiner's use only				
Question Number	Marks	Remark		
1				
2				
3				
4				
5				
6				
7				
8				
Total Marks				

Candidate Number

1	(a)	The planet Mars has a mean radius of 3.39×10^6 m and a mass of 6.42×10^{23} kg. Calculate the gravitational field strength on the surface of Mars.		ce	Examine	er Only Remark	
		Gra	vitational field strength on Mars = Nkg	g ⁻¹	[3]		
	(b)	(i)	Show that Kepler's third law (t^2 proportional to r^3) i with Newton's law of universal gravitation; r is the r and t is the period of the orbit.	is consistent adius of orbit	[2]		
		(ii)	Mars has two small moons, Phobos and Deimos. F has a period of 7.67 hours and an orbital radius are 9.38×10^6 m. Deimos has a period of 30.3 hours. Calculate the orbital radius of Deimos.	² hobos ound Mars of			
			Radius = m		[3]		

(iii) Calculate the force of attraction which Mars exploses, which has a mass of 1.07×10^{16} kg.	xerts on the moon	Examin Marks	er On Rem
Force = N	[2]		

[Turn over

charge on **A** is -4.0 nC. **Fig. 2.1** shows this sphere which is deflected by Marks Remark another charged sphere **B** attached to the end of an insulated rod. The thread makes an angle of 30° with the vertical. 42.0 mm Fig. 2.1 The charge on sphere **B** is -7.0 nC. The centres of the two spheres are 42.0 mm apart. (i) Calculate the magnitude and direction of the electric field strength at a point midway between the charges. Electric field strength = _____ N C^{-1} Direction = [4] (ii) Calculate the magnitude of the force acting on each sphere. Force = _____ N [2]

A small charged metal sphere **A** is suspended by an insulated thread. The

Examiner Only

2

(iii) Find the tension T in the	ne thread.			Examin	ier Only
				Marks	Remark
Tension =	N		[2]		
			[-]		
(iv) Hence find the weight	of the sphere A				
Weight =	_ N		[2]		
		5		[7	
5		U U		Linu	n over

In this question you will be assessed on the quality of your written communication.						er Only Remark	
3	(a)	Sho the	w clearly that the product of capacitance and resistance (CR) hS.I. unit "second".	nas [2]			
	(b)	(i)	Draw a diagram of a circuit from which the time constant of a resistor–capacitor network can be determined. The capacitor is initially uncharged .	s [2]			
		(ii)	Describe how the circuit may be used to obtain results from whethe time constant may be determined.	nich			

	stant.	
	[0]	
	[2]	
lity of written communication	[2]	

BLANK PAGE

(Questions continue overleaf)

 4 (a) A solenoid X is connected to a 50 Hz alternating voltage supply. A second solenoid Y is positioned 10 cm from the first where the maximum flux density is 1.6 mT. See Fig. 4.1.

(i) Calculate the electromotive force (EMF) induced in solenoid Y if it has an area of cross section of 0.0048 m² and contains 200 turns.

Examiner Only

Marks Remark

(ii) Comment on the direction of the magnetic field due to the supply of current in solenoid X and the direction of the magnetic field induced in solenoid Y at any instant in time. Explain your comment.

[2]

An iron core is inserted between solenoid X and solenoid Y, Examiner Only Marks Remark as shown in Fig. 4.2. Х Y a.c. volts 50 Hz a.c. Q φφ supply Fig. 4.2 (iii) Describe and explain the effect of inserting the iron core. _____ [2] (b) In some types of commercial transformer the iron core forms a continuous loop. What additional design feature is incorporated into the core structure? Explain the reason for this additional design feature. _ [2]

5	(i)	Show that when electrons in a vacuum are accelerated from rest through a potential difference of 200 V, they acquire a velocity of $8.4\times10^6m~s^{-1}.$	Examine Marks	er Only Remark
		[2]		
	The para a le	ese electrons now enter a deflection system midway between two allel metal plates 30 mm apart as illustrated in Fig. 5.1 . Each plate has ength of 40 mm.		
		40 mm →		
	_	Horizontal electron beam		
		Fig. 5.1		
	(ii)	Calculate the time it would take an electron moving with a horizontal velocity of 8.4×10^6 m s ⁻¹ to travel through this deflection system. State your answer in nanoseconds.		
		Time = ns [2]		
	(iii)	A voltage of 50 V is now applied across the plates, the top plate being positively charged. On Fig. 5.1 draw the electric field lines between the plates and show the path the electrons travel. [2]		

Force =N [2] 3. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. [3] Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field. [2]	(iv)	1.	Calculate the vertical force on the electrons produced by this electric field.		Examin Marks	er Only Remark
Force =N [2] 3. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field.						
Force =N [2] 3. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field. [3] (u) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field. [3] [2] [2]						
<form></form>						
Force =N [2] 1. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement =mm [3] (*) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field. [3] (*)						
Force =N [2] 3. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement =mm [3] (*) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field. [3] (*) It is possible to cancel out this displacement by applying a magnetic field. [3] [*]						
Force =N [2] 1. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement =mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field.						
2. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field. [3] [1]			Force = N	[2]		
2. Find the vertical displacement of an electron where it reaches the right hand end of the deflection system. Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field.				[-]		
Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field[2]		2.	Find the vertical displacement of an electron where it reaches the right hand end of the deflection system.	he		
Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field[2]						
Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field[2]						
Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field.						
Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field. State clearly the direction of the magnetic field.						
Displacement = mm [3] (v) It is possible to cancel out this displacement by applying a magnetic field						
(v) It is possible to cancel out this displacement by applying a magnetic field.			Displacement = mm	[3]		
[2]	(v)	It is field	possible to cancel out this displacement by applying a magnetic d. State clearly the direction of the magnetic field.	2		
[2]						
[2]						
				[2]		
				[-]		

('	C	
t is meant by a	fundamental	particie.

(a) (i)	Explain what is meant by a fundamental particle.				
				[1]	
(ii)	Gi [,] qu	ve one exam ark.	ole of a fundamental particle of	other than a type of	
(b) (i)	ln ba	Table 7.1 ent ryons and ins	er the names of two particles sert:	that are classified as	
	•	their quark the quark c the particle	structure harges charge.		
			Table 7.1		
Particle	ļ	Structure	Quark charges	Particle charge	
(ii)	Wi nu	nich, if any, o mber must be	the quantities charge, baryor conserved for any reaction t	[4] n number and lepton to be possible?	
				[1]	
(c) (i)	Wr	rite an equation	on for beta decay in terms of o	quarks.	
				[1]	
(ii)	W	nat is the nan	ne of the force responsible for	this process?	
				[1]	

BLANK PAGE

(Questions continue overleaf)

Power from wind turbines

(b)	Cor lenç	ntrol gth 2	signals are transmitted to the turbines by an optical fibre of 20.0 km.		Examin Marks	er Only Remark
	The	e frec	quency of the laser light used is 2.29 $ imes$ 10 ¹⁴ Hz.			
	(i)	1.	Calculate the wavelength of this light.			
			Wavelength m	[1]		
		2.	To which region of the electromagnetic spectrum does this radiation belong?			
				[1]		
	(ii)	Cal ligh 2.4	culate the minimum time it would take for a signal of this t to reach a turbine if the speed of light in the fibre was \times 10 ⁸ m s ⁻¹ .			
		Tim	e = s	[1]		

(c) The electrical power generated by the turbine is transmitted along a multistrand aluminium and steel overhead cable of length 20 km.
 (i) Suggest why a multistrand aluminium and steel cable is used instead of a solid aluminium cable of the same resistance with no steel.

The multistrand aluminium and steel cable consists of eight strands of steel surrounding the aluminium core as shown in **Fig. 8.1**.

Fig. 8.1

The aluminium core has a diameter 0.22 m and the resistivity of aluminium is 2.7 \times 10 $^{-8}\Omega$ m.

Each steel strand has diameter 0.06 m and resistivity $1.5 \times 10^{-7} \Omega$ m.

(ii) Calculate the resistance of 20 km of the multistrand cable.

Resistance = Ω

Examiner Only

Marks Remark

Examiner Only Marks Remark

[2]

Power loss = _____ kW

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE Physics

Data and Formulae Sheet for A2 1 and A2 2

Values of constants

speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permittivity of a vacuum	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{Fm^{-1}}$
	$\left(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{F}^{-1} \mathrm{m}\right)$
elementary charge	$e = 1.60 \times 10^{-19} \text{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$
(unified) atomic mass unit	1 u = 1.66×10^{-27} kg
mass of electron	$m_{\rm e}^{}$ = 9.11 × 10 ⁻³¹ kg
mass of proton	$m_{\rm p}$ = 1.67 × 10 ⁻²⁷ kg
molar gas constant	$R = 8.31 \text{J} \text{K}^{-1} \text{mol}^{-1}$
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J} \mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
acceleration of free fall on	
the Earth's surface	$g = 9.81 \mathrm{ms}^{-2}$
electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

The following equations may be useful in answering some of the questions in the examination:

Mechanics				
	Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force		
	Hooke's Law	F = kx (spring constant k)		
Simple I	narmonic motion			
	Displacement	$x = A \cos \omega t$		
Sound		Ţ		
	Sound intensity level/dB	= 10 $\lg_{10} \frac{I}{I_0}$		
Waves		21/		
	Two-source interference	$\lambda = \frac{dy}{d}$		
Thermal	physics			
	Average kinetic energy of a molecule	$\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$		
	Kinetic theory	$pV = \frac{1}{3} Nm \langle c^2 \rangle$		
	Thermal energy	$Q = mc \Delta \theta$		
Capacitors				
	Capacitors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$		
	Capacitors in parallel	$C = C_1 + C_2 + C_3$		
	Time constant	$\tau = RC$		

Light

Lens formula	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$
Magnification	$m = \frac{V}{U}$

Electricity

Terminal potential difference	V = E - Ir (e.m.f. <i>E</i> ; Internal Resistance <i>r</i>)
Potential divider	$V_{\rm out} = \frac{R_1 V_{\rm in}}{R_1 + R_2}$

Particles and photons

Radioactive decay	$A = \lambda N$	
	$A = A_0 e^{-\lambda t}$	
Half-life	$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$	
de Broglie equation	$\lambda = \frac{h}{p}$	

The nucleus

Nuclear radius	$r = r_0 A^{\frac{1}{3}}$