

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2008

3890-2/7890-2/MS/R/08J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

Unit/Components	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	7
4723 Core Mathematics 3	10
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	16
4726 Further Pure Mathematics 2	19
4727 Further Pure Mathematics 3	22
4728 Mechanics 1	26
4729 Mechanics 2	28
4730 Mechanics 3	30
4732 Probability & Statistics 1	333
4733 Probability & Statistics 2	366
4734 Probability & Statistics 3	39
4736 Decision Mathematics 1	422
4737 Decision Mathematics 2	488
Grade Thresholds	544

$\frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}$ 1 M1 Multiply top and bottom by conjugate $=\frac{12+4\sqrt{7}}{9-7}$ B1 9 ± 7 soi in denominator A1 $\begin{array}{c} 3\\ 3\end{array}$ $6+2\sqrt{7}$ $= 6 + 2\sqrt{7}$ B1 1 $x^2 + y^2 = 49$ 2(i) $x^{2} + y^{2} = 49$ (ii) $| x^2 + y^2 - 6x - 10y - 30 = 0$ $(x-3)^2 - 9 + (y-5)^2 - 25 - 30 = 0$ M1 3^2 5^2 30 with consistent signs soi $(x-3)^2 + (y-5)^2 = 64$ $r^2 = 64$ 8 cao r = 8A1 2 3 $a(x+3)^2 + c = 3x^2 + bx + 10$ 3 B1 $a = 3 \operatorname{soi}$ $3(x^2 + 6x + 9) + c = 3x^2 + bx + 10$ B1 b = 18 soi $3x^{2} + 18x + 27 + c = 3x^{2} + bx + 10$ c = 10 - 9a or $c = 10 - \frac{b^2}{12}$ M1 A1 4 c = -17c = -174 B1 1 p = -14(i) *p* = -1 Attempt to square 15 or attempt to square root (ii) $\sqrt{25k^2} = 15$ M1 $25k^{2}$ $25k^2 = 225$ $k^2 = 9$ A1 k = 3A1 3 k = -3 $k = \pm 3$ M1 $\left| \frac{1}{t^{\frac{1}{3}}} = \frac{1}{2} \text{ or } t^{\frac{1}{3}} = 2 \text{ soi} \right|$ $\sqrt[3]{t} = 2$ (iii) *t* = 8 A1 $\frac{2}{6}$ t = 8

4721 Core Mathematics 1

5(i)	2 ×	B1 B1 2	+ve cubic +ve or -ve cubic with point of inflection at (0, 2) and no max/min points
(ii)	×	B1 B1 2	curve with correct curvature in +ve quadrant only completely correct curve
(iii)	Stretch scale factor 1.5 parallel to y-axis	B1 B1 B1 3 7	stretch factor 1.5 parallel to y-axis or in y-direction
6(i)	EITHER $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	Correct method to solve quadratic
	$x = \frac{-8 \pm \sqrt{64 - 40}}{2}$ $x = \frac{-8 \pm \sqrt{24}}{2}$	A1	$x = \frac{-8 \pm \sqrt{24}}{2}$
	$x = \frac{-8 \pm 2\sqrt{6}}{2}$ $x = -4 \pm \sqrt{6}$	A1 3	$x = -4 \pm \sqrt{6}$
	$(x+4)^{2} - 16 + 10 = 0$ $(x+4)^{2} = 6$ $x+4 = \pm\sqrt{6}$ M1 A1 $x = \pm\sqrt{6}$ A1		
	$x = \pm \sqrt{0} = 4 \qquad \text{AI}$		
(ii)		B1	+ve parabola parabola cutting u axis at $(0, 10)$ where $(0, 10)$
	10	ы	is not min/max point
	×	B1 3	parabola with 2 negative roots
(jiji)		M1	$x \le \text{lower root} x \ge \text{higher root} (\text{allow} <, >)$
	$x \le -\sqrt{6} - 4, x \ge \sqrt{6} - 4$	A1 ft 2	Fully correct answer, ft from roots found in (i)
		8	

7(i)	Gradient = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$
(ii)	$y - 5 = -\frac{1}{2}(x - 6)$	M1	Equation of straight line through (6, 5) with any non-zero numerical gradient
	2y - 10 - r + 6	B1 ft	Uses gradient found in (i) in their equation of line
		A1 3	Correct answer in correct form (integer coefficients)
(iii)	EITHER $\frac{4-x}{2} = x^2 + x + 1$	*M1	Substitute to find an equation in x (or y)
	$4 - x = 2x^2 + 2x + 2$		
	$2x^{2} + 3x - 2 = 0$	DM1	Correct method to solve quadratic
	(2x-1)(x+2) = 0 $r = \frac{1}{2}$ $r = -2$	A1	$x = \frac{1}{2}, x = -2$
	$x^{2}, x^{2} = 2$ $y = \frac{7}{4}, y = 3$	A1 4	$y = \frac{7}{4}, y = 3$
			SR one correct (x, y) pair www B1
	OR		
	$y = (4-2y)^2 + (4-2y) + 1$ *	М	
	$y = 16 - 16y + 4y^2 + 4 - 2y + 1$		
	$0 = 21 - 19y + 4y^2$	A.	
	$0 = (4y - 7)(y - 3) \qquad DN$	41	
	$y = \frac{7}{4}, y = 3$ A1		
	$x = \frac{1}{2}, x = -2$ A		
		8	

8(i)	$\frac{dy}{dx} = 3x^2 + 2x - 1$	*M1 A1	Attempt to differentiate (at least one correct term) 3 correct terms
	At stationary points, $3x^2+2x-1=0$	M1	Use of $\frac{dy}{dx} = 0$
	(3x-1)(x+1) = 0	DM1	Correct method to solve 3 term quadratic
	$x = \frac{1}{3}, x = -1$	A1	$x = \frac{1}{3}, x = -1$
	$y = \frac{76}{27}, y = 4$	A1 6	$y = \frac{76}{27}, 4$
			SR one correct (x, y) pair www B1
(ii)	$\frac{d^2 y}{dr^2} = 6x + 2$	M1	Looks at sign of $\frac{d^2 y}{dx^2}$ for at least one of their x-values or other correct method
	<i>ux</i>		
	$x=\frac{1}{3}, \frac{d^2y}{dx^2}>0$	A1	$x = \frac{1}{3}$, minimum point CWO
	$x = -1, \ \frac{d^2 y}{dx^2} < 0$	A1 3	x = -1, maximum point CWO
(iii)	$-1 < x < \frac{1}{2}$	M1	Any inequality (or inequalities) involving both their x values from part (i)
	3	A1 2	Correct inequality (allow \leq or \leq)
		11	

9(i)	Gradient of AB = $\frac{-2-1}{-5-3}$ = $\frac{3}{8}$	B1	$\frac{3}{8}$ oe
	$y - 1 = \frac{3}{8}(x - 3)$ 8y - 8 = 3x - 9	M1	Equation of line through either A or B, any non- zero numerical gradient
	3x - 8y - 1 = 0	A1 3	Correct equation in correct form
(ii)	$\left(\frac{-5+3}{2},\frac{-2+1}{2}\right)$	M1	Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
	$=(-1, -\frac{1}{2})$	A1 2	$(-1, -\frac{1}{2})$
(iii)	$AC = \sqrt{(-5+3)^2 + (-2-4)^2}$	M1	Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	$=\sqrt{2^2} + 6^2$ $=\sqrt{40}$	A1	$\sqrt{40}$
	$=2\sqrt{10}$	A1 3	Correctly simplified surd
(iv)	Gradient of AC = $\frac{-2-4}{-5+3} = 3$	B1	3 oe
	Gradient of BC = $\frac{4 - 1}{-3 - 3} = -\frac{1}{2}$	B1	$-\frac{1}{2}$ oe
	$3 \times -\frac{1}{2} \neq -1$ so lines are not	M1	Attempts to check $m_1 \times m_2$
	perpendicular	A1 4	Correct conclusion www
		12	

10(i)	$24x^2 - 3x^{-4}$	B1 B1 B1	$24x^{2} \\ kx^{-4} \\ -3x^{-4}$
	$48x + 12x^{-5}$	M1 A1 5	Attempt to differentiate their (i) Fully correct
(ii)	$8x^{3} + \frac{1}{x^{3}} = -9$ $8x^{6} + 1 = -9x^{3}$ $8x^{6} + 9x^{3} + 1 = 0$	*M1	Use a substitution to obtain a 3-term quadratic
	Let $y = x^{3}$ $8y^{2} + 9y + 1 = 0$ (8y + 1)(y + 1) = 0 $y = -\frac{1}{2}, y = -1$	DM1 A1 M1	Correct method to solve quadratic $-\frac{1}{8}$, -1 Attempt to cube root at least one of their
	$x = -\frac{1}{2}, x = -1$	A1 5	y-values $-\frac{1}{2}$, -1
			SR one correct x value www B1 SR for trial and improvement: r = 1 B1
		10	$x = -\frac{1}{2}$ B2 Justification that there are no further solutions B2

4722 Core Mathematics 2

		Mark	Total	
1	area of sector = $\frac{1}{2} \times 11^2 \times 0.7$ = 42.35 area of triangle = $\frac{1}{2} \times 11^2 \times \sin 0.7 = 38.98$ hence area of segment = 42.35 - 38.98 = 3.37	M1 A1 M1 A1	4	Attempt sector area using $(\frac{1}{2}) r^2 \theta$ Obtain 42.35, or unsimplified equiv, soi Attempt triangle area using $\frac{1}{2}ab\sin C$ or equiv, and subtract from attempt at sector Obtain 3.37, or better
			4	
2	area $\approx \frac{1}{2} \times 2 \times \left\{2 + 2\left(\sqrt{12} + \sqrt{28}\right) + \sqrt{52}\right\}$	M1		Attempt <i>y</i> -values at $x = 1, 3, 5, 7$ only
		M1		Correct trapezium rule, any <i>h</i> , for their <i>y</i> values to find area between $x = 1$ and $x = 7$
	≈ 26.7	M1 A1	4	Correct h (soi) for their y values Obtain 26.7 or better (correct working only)
			4	
3	(i) $\log_a 6$	B1	1	State $\log_a 6$ cwo
	(ii) $2\log_0 x - 3\log_0 y = \log_0 x^2 - \log_0 y^3$	M1*		Use $b \log a = \log a^b$ at least once
	$= \log_{10} \frac{x^2}{y^3}$	M1de	ep*	Use $\log a - \log b = \log a/b$
		A1	3	Obtain $\log_{10} \frac{x^2}{y^3}$ cwo
			4	
4	(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$	M1		Attempt to use correct sine rule in ΔBCD , or equiv.
	BD = 18.4 cm	A1	2	Obtain 18.4 cm
	(ii) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$	M1		Attempt to use correct cosine rule in $\triangle ABD$
	$\cos \sigma = 0.3998$	IVII		(from $a^2 = b^2 + c^2 \pm (2)bc \cos A$)
	$\theta = 66.4^{\circ}$	A1	3	Obtain 66.4 ⁰
			5	
5	$\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$	M1		Attempt to integrate
		A1√		Obtain correct, unsimplified, integral following their $f(x)$
	3	A1		Obtain $8x^{\frac{1}{2}}$, with or without + c
	$y = 8x^{\frac{1}{2}} + c \Longrightarrow 50 = 8 \times 4^{\frac{1}{2}} + c$	M1		Use (4, 50) to find <i>c</i>
	$\Rightarrow c = -14$	A1√	_	Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only
	Hence $y = 8x^2 - 14$	A1	6	State $y = 8x^2 - 14$ aef, as long as single power of x
			6	

			Mark	Total	
6	(i)	$u_1 = 7$	B1		Correct u_1
	()	$u_2 = 9, u_3 = 11$	B1	2	Correct u_2 and u_3
	(ii)	Arithmetic Progression	B1	1	Any mention of arithmetic
	(iii)	$\frac{1}{2}N(14 + (N - 1) \times 2) = 2200$	B1		Correct interpretation of sigma notation
			M1		Attempt sum of AP, and equate to 2200
		$N^2 + 6N - 2200 = 0$	A1		Correct (unsimplified) equation
		(N - 44)(N + 50) = 0	M1		Attempt to solve 3 term quadratic in N
		hence $N = 44$	A1	5	Obtain $N = 44$ only $(N = 44$ www is full marks)
				_	
				8	
7	(i)	Some of the area is below the <i>x</i> -axis	B1	1	Refer to area / curve below <i>x</i> -axis or 'negative
	(ii)		M1		Attempt integration with any one term correct
	(11)		A1		Obtain $\frac{1}{3}x^3 - \frac{3}{2}x^2$
		$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_0^3 = \left(9 - \frac{27}{2}\right) - \left(0 - 0\right)$	M1		Use limits 3 (and 0) – correct order / subtraction
		$= -4\frac{1}{2}$	A1		Obtain (-)4 ¹ / ₂
		$\left \frac{1}{3}x^3 - \frac{3}{2}x^2\right _3^5 = \left(\frac{125}{3} - \frac{75}{2}\right) - \left(9 - \frac{27}{2}\right)$	M1		Use limits 5 and 3 – correct order / subtraction
		$=8\frac{2}{3}$	A1		Obtain $8^2/_3$ (allow 8.7 or better)
		Hence total area is $13^{1}/_{6}$	A1	7	Obtain total area as $13^{1}/_{6}$, or exact equiv
					SR: if no longer $\int f(r) dr$ then B1 for using
					[0, 3] and [3, 5]
				8	
8	(i)	$u = 10 \times 0.8^3$	M1		Attempt u_{i} using ar^{n-1}
0	(1)	= 5.12	A1	2	Obtain 5 12 aef
				_	
	(ii)	$S = 10(1-0.8^{20})$	M1		Attempt use of correct sum formula for a GP
	(11)	$S_{20} = \frac{1}{1 - 0.8}$	1011		Autempt use of confect sum formula for a Gr
		= 49.4	A1	2	Obtain 49.4
		$10 10(1 0 8^N)$			
	(iii)	$\frac{10}{1-0.8} - \frac{10(1-0.8)}{(1-0.8)} < 0.01$	M1		Attempt S_{∞} using $\frac{a}{1-a}$
		1-0.8 $(1-0.8)$			1-r
		$50, 50(1, 0.8^N) < 0.01$	AI		Obtain $S_{\infty} = 50$, or unsimplified equiv
		$50 - 50(1 - 0.8) \le 0.01$			LINK $S_{\infty} - S_N$ to 0.01 and attempt to rearrange
		0.0 > 0.0002 A.G.	AI M1		Show given inequality convincingly
		$V \log 0.8 < \log 0.0002$			Hubble logarithms on both sides Use log $a^b = b \log a$ and attempt to find M
	N >	38169 hence $N=39$		7	Obtain $N = 39$ only
	14 >	50.107, nence 1v - 57		'	Sound iv 57 only
				11	
				11	

			Mark	Fotal	
9	(i) (ii)	 (90°, 2), (-90°, -2) (a) 180 - α (b) -α or α - 180 	B1 B1 B1 B1	2 1 1	State at least 2 correct values State all 4 correct values (radians is B1 B0) State 180 - α State - α or α - 180 (radians or unsimplified is B1B0)
	(iii)	$2\sin x = 2 - 3\cos^{2} x$ $2\sin x = 2 - 3(1 - \sin^{2} x)$ $3\sin^{2} x - 2\sin x - 1 = 0$ $(3\sin x + 1)(\sin x - 1) = 0$ $\sin x = -\frac{1}{3}, \sin x = 1$ $x = -19.5^{\circ}, -161^{\circ}, 90^{\circ}$	M1 A1 A1 A1√ A1	6	Attempt use of $\cos^2 x = 1 - \sin^2 x$ Obtain $3\sin^2 x - 2\sin x - 1 = 0$ aef with no brackets Attempt to solve 3 term quadratic in sinx Obtain $x = -19.5^{\circ}$ Obtain second correct answer in range, following their x Obtain 90° (radians or extra answers is max 5 out of 6) SR: answer only (and no extras) is B1 B1 $\sqrt{B1}$
			1	10	
10	(i)	$(2x+5)^4 = (2x)^4 + 4(2x)^3 5 + 6(2x)^2 5^2 + 4(2x) 5^3 + 5^4$ $= 16x^4 + 160x^3 + 600x^2 + 1000x + 625$	M1* M1* A1dep A1	o* 4	Attempt expansion involving powers of $2x$ and 5 (at least 4 terms) Attempt coefficients of 1, 4, 6, 4, 1 Obtain two correct terms Obtain a fully correct expansion
	(ii)	$(2x+5)^{4} - (2x-5)^{4} = 320x^{3} + 2000x$	M1 A1	2	Identify relevant terms (and no others) by sign change oe Obtain $320x^3 + 2000x$ cwo
	(iii)	$9^4 - (-1)^4 = 6560 \text{ and } 7360 - 800 = 6560 \text{ A.G.}$ $320x^3 - 1680x + 800 = 0$ $4x^3 - 21x + 10 = 0$ $(x - 2)(4x^2 + 8x - 5) = 0$ (x - 2)(2x - 1)(2x + 5) = 0 Hence $x = \frac{1}{2}, x = -2\frac{1}{2}$	B1 M1 A1√ A1 M1 A1	6	Confirm root, at any point Attempt complete division by $(x - 2)$ or equiv Obtain quotient of $ax^2 + 2ax + k$, where <i>a</i> is their coeff of x^3 Obtain $(4x^2 + 8x - 5)$ (or multiple thereof) Attempt to solve quadratic Obtain $x = \frac{1}{2}, x = -2\frac{1}{2}$
			[]	12	SR: answer only is B1 B1

4723 Core Mathematics 3

1	(i)	Show cor	rect process for composition of fu	nctions	M1		numerical or algebraic; the right way round
		Obtain (-	-3 and hence) -23		A1	2	
	(ii)	Either:	State or imply $x^3 + 4 = 12$		B1		
			Attempt solution of equation inv	olving x^3	M1		as far as $x = \dots$
			Obtain 2		A1	3	and no other value
		<u>Or</u> :	Attempt expression for f^{-1}		M1		involving x or y ; involving cube root
			Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$		A1		
			Obtain 2		Al	(3)	and no other value
2	(i)	Obtain	correct first iterate 2.864		B1		or greater accuracy 2.864327;
		Carry o	ut correct iteration process		M1		condone 2 dp here and in working to find at least 3 iterates in all
		Obtain	2.877		A1	3	after at least 4 steps; answer
			$[3 \rightarrow 2.864327 \rightarrow 2.$	878042 → 2.876661	$ \rightarrow$	2.8	required to exactly 3 dp 76800]
	(ii)	State or	imply $x = \sqrt[3]{31 - \frac{5}{2}x}$		B1		
		Attemp	t rearrangement of equation in x		M1		involving cubing and grouping non-zero terms on LHS
		Obtain	equation $2x^3 + 5x - 62 = 0$		A1	3	or equiv with integers
3	(a)	State co	prrect equation involving $\cos \frac{1}{2} \alpha$		B1		such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
		A 44 a	the find walnue of a		M1		or
		Obtain	151		A1	3	or greater accuracy; and no other
							values between 0 and 180
	(b)	State or	imply $\cot \beta = \frac{1}{\tan \beta}$		B 1		
		Rearran	ge to the form $\tan \beta = k$		M1		or equiv involving $\sin \beta$ only or $\cos \beta$ only allow missing \pm
		Obtain	69.3		A1		
		Obtain	111		A1	4	or greater accuracy; and no others between 0 and 180
Л	(i)	Obtain	derivative of form $bb^5(b^6 + 16)^n$		M1		any constant k any $n < \frac{1}{2}$, allow if
4	(I)	Obtain	(n + 10)		1411		-4 term retained
		Obtain	correct $3h^5(h^6 + 16)^{-\frac{1}{2}}$		A1		or (unsimplified) equiv; no -4 now
		Substitu	te to obtain 10.7		A1	3	or greater accuracy or exact equiv
	(ii)	Attemp Attemp Obtain	t multn or divn using 8 and answe t 8 divided by answer from (i) 0.75	er from (i) M1	M1 A1\	3	or greater accuracy; allow 0.75 ± 0.01 ; following their answer from (i)

Obtain (unsimplified) $\frac{1}{2\pi}(\frac{1}{2x}+7)^{10} + c$ A1or equivObtain (simplified) $\frac{1}{2\pi}(3x+7)^{10} + c$ A13(b) State $\int \pi(\frac{1}{2x})^2 dx$ B1or equiv involving x; condone no dxIntegrate to obtain k ln xM1any constant k involving π or not; or equiv such as $k \ln 4x$ or $\frac{1}{4} \ln x$ or $\frac{1}{4} \ln 4x$ or $\frac{1}{4}$	5 (a)	Obtain integral of form $k(3x+7)^{10}$	M1	any constant k
Obtain (simplified) $\frac{1}{3\pi}(3x+7)^{10} + c$ AI 3(b) State $\int \pi(\frac{1}{3\sqrt{5}})^2 dx$ B1or equiv involving x; condone no dxIntegrate to obtain k ln xM1any constant k involving π or not; or equiv such as k ln 4x or k ln 2xObtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\ln 4x$ or $\frac{1}{4}\ln 4x$ AI Show use of the log $a - \log b$ propertyM16 (i) Either:Refer to translation and reflection State reflection in x-axisB1 Ω :in either order; allow clear equivs or equiv but now using correct terminologyB1in either order; allow clear equivs or equiv but now using correct terminologyB1in either order; allow clear equivs or equiv but now using correct terminologyB13 sub correct process for finding at least one value(ii) Attempt use of product rule for xe^{2x} M1(b) at $1 - \frac{1}{2}\sqrt{3}$ A1(iii) Attempt use of product rule for xe^{2x} (iii) Attempt use of guotient ruleObtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ (iii) Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ (iii) Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ (iii) Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ (iii) Attempt use of user minant Obtain $-e^2$ (iii) Attempt use of iscriminant Obtain $-e^2$ (iii) Attempt use of iscriminant Obtain $-e^2$ (iii) Attempt use of user minant Obtai		Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x+7)^{10}$	A1	or equiv
(b) State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$ Integrate to obtain $k \ln x$ Obtain $\frac{1}{4} \pi \ln x$ or $\frac{1}{4} \ln x$ or $\frac{1}{4} \pi \ln 4x$ or $\frac{1}{4} \ln 4x$ AI Show use of the log $a - \log b$ property Obtain $\frac{1}{4} \pi \ln 2$ 6 (i) Either: Refer to translation and reflection State translation by 1 in negative <i>x</i> -direction State reflection in <i>x</i> -axis Or: Refer to translation and reflection State reflection in <i>x</i> -axis Or: Refer to translation and reflection State translation by 1 in positive <i>x</i> -direction State translation and reflection State reflection in <i>x</i> -axis State translation and reflection State reflection in <i>x</i> -axis Or: Refer to translation and reflection State translation by 1 in positive <i>x</i> -direction State translation by 1 in positive <i>x</i> -direction State translation and reflection of 'negative' part in <i>x</i> -axis Show (more or less) correct sketch (ii) Attempt use of product rule for xe^{2x} Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x + k)^2}$ AI or exact equiv, give A1A0 if extra incorrect solution(s) provided 7 (i) Attempt use of product rule for xe^{2x} Obtain $\frac{e^{2x}(2x^2 + 2kx + k - 0)}{(x + k)^2}$ (ii) Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k - 0$ Obtain $x = -1$ Obtain $x $		Obtain (simplified) $\frac{1}{30}(3x+7)^{10} + c$	A1 3	
Integrate to obtain $k \ln x$ Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ AI Show use of the log $a - \log b$ property Obtain $\frac{1}{4}\pi \ln 2$ 6 (i) Either: Refer to translation and reflection State translation by 1 in negative x-direction State translation by 1 in negative x-direction State translation by 1 in positive x-direction State translation of 'negative' part in x-axis State translation frinding at least one value (ii) Attempt correct process for finding at least one value Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 + \frac{1}{2}\sqrt{3}$ A1 or exact equiv A1 or equiv much or without product rule Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x + k)^2}$ (ii) Attempt use of product rule for xe^{2x} Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2 + 2kx + k = 0)$ Obtain $x = -1$ Attempt solution of $2x^2 + 2kx + k = 0$ Obtain $x = -1$ A1 or equiv A1 5 or exact equiv A1 5 or exact equiv	(b)	State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$	B1	or equiv involving x; condone no dx
or equiv such as $k \ln 4x$ or $k \ln 2x$ Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ A1 Show use of the log $a - \log b$ property Obtain $\frac{1}{4}\pi \ln 2$ M1 not dependent on earlier marks A1 5 or similarly simplified equiv 6 (i) Either: Refer to translation and reflection State reflection in x-axis Or: Refer to translation and reflection State reflection in x-axis State reflection in x-axis State translation by 1 in positive x-direction State translation by 1 in positive x-direction (ii) Show sketch with attempt at reflection of 'negative' part in x-axis State translation by 1 in positive x-direction (iii) Attempt correct process for finding at least one value Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $\frac{e^{2x}}{(x+k)^2}$ A1 or exact equiv (ii) Attempt use of product rule for xe^{2x} A1 or exact equiv (iii) Attempt use of quotient rule Obtain $\frac{e^{2x}}{(x+k)^2}$ A1 or equiv may be within QR attempt Attempt use of discriminant Obtain $\frac{e^{2x}}{(x+k)^2}$ A1 5 AG; necessary detail required (ii) Attempt use of discriminant Obtain $x=-1$ Obtain $x=-1$ Obtain $x=-1$ A1 Obtain $x=-1$ A1 Obtain $x=-1$ A1 Obtain $x=-1$ A1 Obtain $x=-1$ A1 A1 5 or exact equiv		Integrate to obtain $k \ln x$	M1	any constant k involving π or not;
Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ or $\frac{1}{4}\ln 4x$ or Show use of the log $a - \log b$ property Obtain $\frac{1}{4}\pi \ln 2$ M1 not dependent on earlier marks AI 5 or similarly simplified equiv6 (i)Either: State translation and reflection State reflection in x-axis State translation and reflection State reflection in x-axis State translation by 1 in positive x-direction State translation by 1 in positive x-direction State translation by 1 in positive x-direction (ii)B1 in either order; allow clear equivs B1 in either order; allow clear equivs B1 B1 in either order; allow clear equivs B1 B1 (i)(iii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchB1 in and curve for $0 \le x \le 1$ unchanged AI 2 with correct curvature(iii)Attempt correct process for finding at least one valueM1 as far as $x = \dots$; accept decimal equivs (degrees or radians) or expressions involving $\sin(\frac{1}{3}\pi)$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ A1 or exact equiv (A1 or equiv maybe within QR attempt Attempt use of product rule for xe^{2x} $(x + k)^2$ 7(i)Attempt use of discriminant Obtain $\frac{e^{2x}}{(x^2 + 2kx + k)}$ M1 or equiv A1(ii)Attempt use of discriminant Obtain $x=-1$ Obtain $x=-1$ M1 or equiv at e^{2x} (iii)Attempt use of discriminant Obtain $x=-1$ M1 or equiv A1(iii)Attempt use of discriminant Obtain $x=-1$ M1 or equiv A1(iii)Attempt use of discriminant Obtain $x=-1$ M1 or equiv A1(iii)Attempt use of dis				or equiv such as $k \ln 4x$ or $k \ln 2x$
Show use of the log $a - \log b$ propertyM1not dependent on earlier marksObtain $\frac{1}{4}x \ln 2$ A15or similarly simplified equiv6 (i) Either: Refer to translation and reflection State translation by 1 in negative x-direction State reflection in y-axis State translation and reflection State translation and reflection State translation by 1 in positive x-directionB1in either order; allow clear equivs B1(ii) Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchB1and curve for 0 <x<1 unchanged<br=""></x<1> A12(iii) Attempt correct process for finding at least one valueM1as far as x =; accept decimal equivs (degrees or rations) or expressions involving sin($\frac{1}{3}x$)7(i) Attempt use of product rule for xe^{2x} Obtain $1 + \frac{1}{2}\sqrt{3}$ A1or equiv; maybe within QR attempt M17(i) Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ $(x+k)^2$ M1obtaining + A17(i) Attempt use of product rule for xe^{2x} Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$ M1obtaining + A17(i) Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$ M1obtaining + A16(ii) Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2 + 2kx + k) = 0}{(x+k)(e^{2x} + 2kx + k)}$ M1obtaining + A17(ii) Attempt use of discriminant Obtain $\frac{e^{2x}}{(x+k)^2}$ M1obtaining + A165(iii) Attempt use of discriminant Obtain $\frac{e^{2x}}{(x+k)^2}$ M1obtain in errore of		Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ A1		
Obtain $\frac{1}{4}\pi \ln 2$ AI 5or similarly simplified equiv6 (i)Either: State translation and reflection State translation by 1 in negative x-direction State reflection in x-axis State reflection in y-axis State translation by 1 in positive x-directionBIin either order; allow clear equivs terminology(ii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchBIis either order; allow clear equivs terminology(iii)Attempt correct process for finding at least one valueMIas far as $x =;$ accept decimal equivs (degrees or radians) or expressions involving $sin(\frac{1}{3}\pi)$ 7(i)Attempt use of product rule for xe^{2x} ($x+k)^2$ MIobtain $g^{-x} + 2xe^{2x}$ 7(i)Attempt use of guotient rule Obtain $e^{2x} + 2xe^{2x}$ ($x+k)^2$ MIobtaining + AI7(i)Attempt use of guotient rule Obtain $e^{2x} + 2xe^{2x}$ MIobtaining + AI7(i)Attempt use of guotient rule Obtain $e^{2x} + 2xe^{2x}$ MIobtaining + AI7(i)Attempt use of quotient rule Obtain $e^{2x} + 2xe^{2x}$ MIobtaining + AI7(i)Attempt use of guotient rule Obtain $e^{2x} + 2xe^{2x}$ MIobtaining + AI8(ii)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ MIor equiv AI9Obtain $\pi = -1$ Obtain $-e^2$ AISo or exact equiv		Show use of the log $a - \log b$ property	M1	not dependent on earlier marks
6 (i)Either: State translation by 1 in negative x-direction State reflection in x-axis Or: Refer to translation by 1 in positive x-direction State reflection in y-axis State translation by 1 in positive x-directionB1 in either order; allow clear equivs B1 in either order; allow clear equivs B1(ii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchB1 in either order; allow clear equivs B1 in either order; allow clear equivs B1(iii)Attempt correct process for finding at least one value Obtain $1 - \frac{1}{2}\sqrt{3}$ M1 and curve for $0 < x < 1$ unchanged A1 2 with correct curvature7(i)Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ Attempt use of quotient rule Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x + k)^2}$ M1 of equiv maybe within QR attempt M1 with or without product rule A17(i)Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x + k)^2}$ M1 or equiv of all or equiv A17(ii)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ M1 or equiv of k using correct formula7(ii)Attempt use of discriminant Obtain $x = -1$ Obtain $-e^2$ M1 or exact equiv81and curve of $0 < x^2 + 2kx + k = 0$ 91Attempt solution of $2x^2 + 2kx + k = 0$ 91M1 or equiv91Attempt solution of $2x^2 + 2kx + k = 0$ 91M1 or exact equiv91M1 or equiv91M1 or exact equiv<		Obtain $\frac{1}{4}\pi \ln 2$	A1 5	or similarly simplified equiv
State translation by 1 in negative x-directionB1 or equiv but now using correct terminology Ω_{T} :Refer to translation and reflection State reflection in y-axis State translation by 1 in positive x-directionB1 is using correct terminology(ii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchB1 is and curve for $0 < x < 1$ unchanged A1 2 with correct curvature(iii)Attempt correct process for finding at least one valueM1 as far as $x =;$ accept decimal equivs (degrees or radians) or expressions involving $\sin(\frac{1}{2}\pi)$ (btain $1 - \frac{1}{2}\sqrt{3}$ A1 Obtain $1 - \frac{1}{2}\sqrt{3}$ A1 or exact equiv7(i)Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ M1 obtain $g^{2x} + 2xe^{2x}$ ($x + k)^2$ 7(i)Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ M1 or equiv, maybe within QR attempt M1 with or without product rule7(i)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ M1 or equiv(ii)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ M1 or equiv(iii)Attempt solution of $2x^2 + 2kx + k = 0$ M1 using their numerical value of k or solving in terms of k using correct formula(iii)Attempt solution of $2x^2 + 2kx + k = 0$ M1 using their numerical value of k or solving in terms of k using correct formula	6 (i)	Either: Refer to translation and reflection	B1	in either order; allow clear equivs
State reflection in x-axis Ω_{T} : Refer to translation and reflection State reflection in y-axis State translation by 1 in positive x-direction (ii) Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketch (iii) Attempt correct process for finding at least one value (iii) Attempt correct process for finding at least one value Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 + \frac{1}{2}\sqrt{3}$ Obtain $1 + \frac{1}{2}\sqrt{3}$ Obtain $e^{2x} + 2xe^{2x}$ Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ Attempt use of product rule for xe^{2x} Obtain $\frac{e^{2x}(2x^2 + 2kx + k)^2}{(x + k)^2}$ (ii) Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ Obtain $x = -1$ Obtain $x = -1$ Obtain $-e^{-2}$ Nu sing their numerical value of k or solving in terms of k using correct formula H 3 Sum correct equiv H 3 sing correct terminology H 3 using correct terminology H 3 and curve for $0 < x < 1$ unchanged A1 2 with order terminology H 3 and curve for $0 < x < 1$ unchanged A1 3 or exact equiv A1 5 AG; necessary detail required H 3 or equiv A1 5 or exact equiv		State translation by 1 in negative <i>x</i> -direction	B 1	or equiv but now using correct
Or:Refer to translation and reflection State reflection in y-axis State translation by 1 in positive x-directionB1 in either order; allow clear equivs B1(ii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchB1 (3) with order reflection then translation clearly intended(iii)Attempt correct process for finding at least one valueM1 as far as $x =$; accept decimal equivs (degrees or radians) or expressions involving sin($\frac{1}{3}\pi$)Obtain $1 - \frac{1}{2}\sqrt{3}$ A1 or exact equivor exact equiv7(i)Attempt use of product rule for xe^{2x} Obtain $1 + \frac{1}{2}\sqrt{3}$ M1 of exact equiv, give A1A0 if extra incorrect solution(s) provided7(i)Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ $(x + k)^2$ M1 obtaining +0Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x + k)^2}$ A1 S0attempt use of discriminat Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ M1 or equiv A1(ii)Attempt use of discriminat Obtain $-e^{-2}$ M1 or equiv A1S(iii)Attempt use of discriminat Obtain $-e^{-2}$ M1 or equiv A1S(iii)Attempt solution of $2x^2 + 2kx + k = 0$ M1 A100 $2x^2 + 2k$		State reflection in <i>x</i> -axis	B1 3	using correct terminology
State reflection in y-axis State translation by 1 in positive x-direction (ii) Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketch (iii) Attempt correct process for finding at least one value Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 - \frac{1}{2}\sqrt{3}$ Obtain $1 + \frac{1}{2}\sqrt{3}$ Obtain $1 + \frac{1}{2}\sqrt{3}$ At or exact equiv Attempt use of product rule for xe^{2x} Attempt use of product rule for xe^{2x} Attempt use of quotient rule Obtain $unsimplified \frac{(x + k)(e^{2x} + 2xe^{2x}) - xe^{2x}}{(x + k)^2}$ Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x + k)^2}$ (ii) Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ Obtain $x = -1$ Obtain $-e^{-2}$ Obtain $x = -1$ Obtain $-e^{-2}$ Ni obtain $x = -1$ Obtain $-e^{-2}$		<u>Or</u> : Refer to translation and reflection	B1	in either order; allow clear equivs
(ii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchMI and curve for $0 \le x \le 1$ unchanged AI 2 with correct curvature(iii)Attempt correct process for finding at least one valueMI as far as $x =$; accept decimal equivs (degrees or radians) or expressions involving $sin(\frac{1}{3}\pi)$ Obtain $1 - \frac{1}{2}\sqrt{3}$ AI or exact equivor exact equiv7(i)Attempt use of product rule for xe^{2x} Obtain $1 + \frac{1}{2}\sqrt{3}$ AI or exact equiv; give AIA0 if extra incorrect solution(s) provided7(i)Attempt use of product rule for xe^{2x} Obtain usimplifiedMI $(x+k)^2$ otalining + AI or equiv; maybe within QR attempt MI with or without product rule7(i)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ MI or equiv AI(ii)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ MI or equiv AI(iii)Attempt solution of $2x^2 + 2kx + k = 0$ MI or equiv AI(iii)Attempt use of discriminant Obtain $-e^{-2}$ MI AI(iii)Attempt solution of $2x^2 + 2kx + k = 0$ MI or equiv AI		State reflection in y-axis State translation by 1 in positive x-direction	BI B1 (3) with order reflection then translation
(ii)Show sketch with attempt at reflection of 'negative' part in x-axis Show (more or less) correct sketchM1 and curve for $0 \le x \le 1$ unchanged AI 2(iii)Attempt correct process for finding at least one valueM1 as far as $x =$; accept decimal equivs (degrees or radians) or 		2	(-	clearly intended
part in x and Show (more or less) correct sketchAI2with correct urbors of v1 unchanged(iii)Attempt correct process for finding at least one valueAI2with correct orver ure(iii)Attempt correct process for finding at least one valueMIas far as $x =$; accept decimal equivs (degrees or radians) or expressions involving sin($\frac{1}{3}\pi$)Obtain $1 - \frac{1}{2}\sqrt{3}$ AIor exact equiv7(i)Attempt use of product rule for xe^{2x} AIObtain $e^{2x} + 2xe^{2x}$ AIor exact equiv; give AIA0 if extra incorrect solution(s) provided7(i)Attempt use of quotient rule Obtain unsimplified $(x+k)(e^{2x}+2xe^{2x}) - xe^{2x}$ $(x+k)^2$ MIObtain $e^{2x}(2x^2+2kx+k)$ $(x+k)^2$ AI5AG; necessary detail required(ii)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ MIusing their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ Obtain $-e^{-2}$ AI5or exact equiv	(ii)	Show sketch with attempt at reflection of 'negative'	M1	and curve for 0 <r<1 th="" unchanged<=""></r<1>
(iii) Attempt correct process for finding at least one valueM1as far as $x =;$ accept decimal equivs (degrees or radians) or expressions involving $\sin(\frac{1}{3}\pi)$ Obtain $1 - \frac{1}{2}\sqrt{3}$ A1or exact equivObtain $1 + \frac{1}{2}\sqrt{3}$ A1or exact equiv7(i) Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ Attempt use of quotient rule Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ M1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1or equiv; maybe within QR attempt M1 with or without product rule(ii) Attempt use of discriminant Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A15(ii) Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ M1using their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ Obtain $-e^{-2}$ A15or exact equiv		Show (more or less) correct sketch	A1 2	with correct curvature
Obtain $1 - \frac{1}{2}\sqrt{3}$ A1or exact equivObtain $1 + \frac{1}{2}\sqrt{3}$ A1or exact equivObtain $1 + \frac{1}{2}\sqrt{3}$ A1or exact equiv; give A1A0 if extra incorrect solution(s) provided7(i) Attempt use of product rule for xe^{2x} M1Obtain $e^{2x} + 2xe^{2x}$ A1or equiv; maybe within QR attempt M1Attempt use of quotient rule Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ A1Attempt solution of $2x^2 + 2kx + k = 0$ M1Ubtain $x = -1$ Obtain $-e^{-2}$ A1Obtain $x = -1$ Obtain $-e^{-2}$ A1Stain $x = -1$ A1Obtain $-e^{-2}$ A1	(iii)	Attempt correct process for finding at least one value	M1	as far as $x =$; accept decimal equivs (degrees or radians) or expressions involving $sin(\frac{1}{2}\pi)$
Obtain $1 + \frac{1}{2}\sqrt{3}$ A1 3or exact equiv; give A1A0 if extra incorrect solution(s) provided7 (i) Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$ Attempt use of quotient rule Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ M1obtaining + A10Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1 x 0 $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A10 $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A10 $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A10 $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A10 $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A10 $\frac{1}{2}e^{-8k} = 0$ or equiv and hence $k = 2$ A10 $\frac{1}{2}e^{-2k}$ A1 $\frac{1}{2}e^{-2k}e^{$		Obtain $1-\frac{1}{2}\sqrt{3}$	A1	or exact equiv
7(i) Attempt use of product rule for xe^{2x} MIobtaining +Obtain $e^{2x} + 2xe^{2x}$ A1or equiv; maybe within QR attemptAttempt use of quotient ruleMIwith or without product ruleObtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1(ii) Attempt use of discriminantMIObtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ A1Attempt solution of $2x^2 + 2kx + k = 0$ MIUsing their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ A1Obtain $-e^{-2}$ A1		Obtain $1 + \frac{1}{\sqrt{3}}$	A1 3	or exact equiv: give A1A0 if extra
7 (i) Attempt use of product rule for xe^{2x} M1obtaining $\dots + \dots$ Obtain $e^{2x} + 2xe^{2x}$ A1or equiv; maybe within QR attemptAttempt use of quotient ruleM1with or without product ruleObtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1(ii) Attempt use of discriminantM1Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ A1Attempt solution of $2x^2 + 2kx + k = 0$ M1using their numerical value of k or solving in terms of k using correct formulaObtain $-e^{-2}$ A1				incorrect solution(s) provided
7 (i)Attempt use of product fulle for xe^{2x} M1Obtaining $\dots + \dots$ Obtain $e^{2x} + 2xe^{2x}$ A1or equiv; maybe within QR attemptAttempt use of quotient ruleM1with or without product ruleObtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A15Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A15(ii)Attempt use of discriminantM1Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ A1Attempt solution of $2x^2 + 2kx + k = 0$ M1Ubtain $x = -1$ M1Obtain $-e^{-2}$ A15or exact equiv	7 (i)	Attempt use of product rule for xe^{2x}	M1	obtaining +
Obtain $e^{-2} + 2xe^{-1}$ Aior equiv, maybe within QR attemptAttempt use of quotient rule $M1$ with or without product ruleObtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1(ii) Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ Attempt solution of $2x^2 + 2kx + k = 0$ M1Obtain $x = -1$ Obtain $-e^{-2}$ M1Using their numerical value of k or solving in terms of k using correct formulaA1A1	/ (I)	Attempt use of product full for $x \in \mathbb{R}^{2x}$		obtaining +
Attempt de of quotien faiteMIwith of without product faiteObtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ A1(ii)Attempt use of discriminant ObtainM1Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ M1Attempt solution of $2x^2 + 2kx + k = 0$ M1Using their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ ObtainA1Obtain $-e^{-2}$ A1		$\begin{array}{llllllllllllllllllllllllllllllllllll$	AI M1	with or without product rule
Obtain unsimplified $(x+k)^2$ AlObtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$ Al5AG; necessary detail required(ii)Attempt use of discriminant ObtainM1or equivObtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ M1using their numerical value of k or solving in terms of k using correct 		$(x + k)(e^{2x} + 2xe^{2x}) - xe^{2x}$		with of without product fulle
Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$ A1 5AG; necessary detail required(ii)Attempt use of discriminant ObtainM1or equivObtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ A1Attempt solution of $2x^2 + 2kx + k = 0$ M1using their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ ObtainA15or exact equiv		Obtain unsimplified $\frac{(x+k)^2}{(x+k)^2}$	Al	
(ii)Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ M1 A1or equivAttempt solution of $2x^2 + 2kx + k = 0$ M1 using their numerical value of k or solving in terms of k using correct formulaM1 or equivObtain $x = -1$ Obtain $-e^{-2}$ A1 A1		Obtain $\frac{e^{2x}(2x^2+2kx+k)}{(x+k)^2}$	A1 5	AG; necessary detail required
Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$ A1Attempt solution of $2x^2 + 2kx + k = 0$ M1using their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ A1Obtain $-e^{-2}$ A1	(ii)	Attempt use of discriminant	M1	or equiv
Attempt solution of $2x^2 + 2kx + k = 0$ M1using their numerical value of k or solving in terms of k using correct formulaObtain $x = -1$ A1Obtain $-e^{-2}$ A1A15Or exact equiv	()	Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$	A1	
Solving in terms of k using correct formula Obtain $x = -1$ Obtain $-e^{-2}$ A1 A1 5 or exact equiv		Attempt solution of $2x^2 + 2kx + k = 0$	M1	using their numerical value of k or
Obtain $x = -1$ formulaObtain $-e^{-2}$ A1 5 or exact equiv				solving in terms of k using correct
Obtain $-e^{-2}$ A1 5 or exact equiv		Obtain $r = -1$	Δ1	formula
		Obtain $-e^{-2}$	A1 5	or exact equiv

4723

B1

M1

8 (i) State or imply h = 1Attempt calculation involving attempts at y values

> Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91

(ii) State $e^{x \ln 2}$ or $k = \ln 2$ Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$ Obtain $\frac{1}{\ln 2}(e^{6\ln 2} - e^0)$ Simplify to obtain $\frac{63}{\ln 2}$

(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

1, 2, 4 occurring at least once; involving at least 5 *y* values any constant *a*A1 4
B1 allow decimal equiv such as e^{0.69x} any constant *k* or in terms of general *k*A1 or exact equiv
A1 4 allow if simplification in part (iii)

addition with each of coefficients

- M1 provided ln 2 involved other than in power of e
- A1 2 AG; necessary correct detail required

9 (i)	State at least one of $\cos\theta\cos60 - \sin\theta\sin60$ and $\cos\theta\cos30 - \sin\theta\sin30$	B1	
	Attempt complete multiplication of identities of form $\pm \cos \cos \pm \sin \sin$	M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
	Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$	M1	2 2
	Obtain $\sqrt{3} - 2\sin 2\theta$	A1 4	AG; necessary detail required
(ii)	Attempt use of 22.5 in right-hand side	M1	
	Obtain $\sqrt{3} - \sqrt{2}$	A1 2	or exact equiv
(iii)	Obtain 10.7	B1	or greater accuracy; allow ± 0.1
	Attempt correct process to find two angles	M1	from values of 2θ between 0 and 180
	Obtain 79.3	A1 3	or greater accuracy and no others between 0 and 90; allow ± 0.1
(iv)	Indicate or imply that critical values of		
	$\sin 2\theta$ are -1 and 1	M1	
	Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$	A1	condoning decimal equivs, $\leq \geq$ signs
	Obtain complete correct solution	A1 3	now with exact values and unambiguously stated

4723

4724 Core Mathematics 4

1	Method for finding magnitude of any vector Method for finding scalar prod of any 2 vectors Using $\cos \theta = \frac{\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \cdot 2\mathbf{i} + \mathbf{j} + \mathbf{k}}{ \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} 2\mathbf{i} + \mathbf{j} + \mathbf{k} }$ 70.9 (70.89, 70.893) WWW; 1.24 (1.237)	M1 M1 M1 A1 4	Expect $\sqrt{14}$ and $\sqrt{6}$ Expect $1.2 + (-2).1 + 3.1 = 3$ Correct vectors only. Expect $\cos \theta = \frac{3}{\sqrt{14}\sqrt{6}}$ Condone answer to nearest degree (71)
2	(i) Correct format $\frac{A}{x+1} + \frac{B}{x+2}$ $-\frac{1}{x+1}$ or $A = -1$ $+\frac{2}{x+2}$ or $B = 2$	M1 A1 A1 3	stated or implied by answer
_	(ii) $\int \frac{1}{x+1} dx = \ln(x+1) \text{ or } \ln x+1 $ or $\int \frac{1}{x+2} dx = \ln(x+2) \text{ or } \ln x+2 $ $A \ln x+1 + B \ln x+2 + c \text{ ISW}$	B1 √A1 2	Expect $-\ln x+1 + 2\ln x+2 + c$
3	<u>Method 1 (Long division)</u> Clear correct division method at beginning Correct method up to & including x term in quot <u>Method 2 (Identity)</u> Writing $(x^2 + 2x - 1)(x^2 + bx + 2) + cx + 7$ Attempt to compare cfs of x^3 or x^2 or x or const Then: b = -4 c = -1 a = 5	M1 M1 M1 M1 A1 A1 A1 5	x^{2} in quot, mult back & attempt subtraction [At subtraction stage, cf $(x^{4})=0$] [At subtraction stage, cf $(x^{3})=0$] Probably equated to $x^{4} - 2x^{3} - 7x^{2} + 7x + a$
4	$\frac{d}{dx}(x^{2}y) = x^{2} \frac{dy}{dx} + 2xy$ $\frac{d}{dx}(y^{3}) = 3y^{2} \frac{dy}{dx}$ Substitute $(x,y) = (1,1)$ and solve for $\frac{dy}{dx}$ $\frac{dy}{dx} = -\frac{11}{7} \qquad WWW$ Gradient normal $= -\frac{1}{\frac{dy}{dx}}$ $7x - 11y + 4 = 0$ AEF	B1 B1 M1 M1 A1 M1 A1 6	s.o.i.; or v.v. Solve now or at normal stage. [This dep on either/both B1 earned] Implied if grad normal = $\frac{7}{11}$ Numerical or general, awarded at any stage No fractions in final answer.

4724

		[7
5	(i) Use $3i - 4j + 2k$ and $2i - j - 5k$ only	M1	
	Use correct method for scalar prod of any 2 vectors	M1	(indep) May be as part of $\cos \theta = \frac{a.b}{ a b }$
	Obtain $6 + 4 - 10$, state = 0 & deduce perp AG	A1 3	 w 0
	(ii) Produce 3 equations in <i>s</i> and <i>t</i>	*M1	of the type $5 + 3s = 2 + 2t$, $-2 - 4s = -2 - t$ and $-2 + 2s = 7 - 5t$
	Solve 2 of the equations for s and t	dep*M1	\underline{Or} Eliminate s (or t) from 2 pairs dep*M1
	Obtain $(s,t) = \left(\frac{3}{5}, \frac{12}{5}\right) \operatorname{or} \left(\frac{9}{22}, \frac{18}{11}\right) \operatorname{or} \left(\frac{3}{19}, \frac{33}{19}\right)$	A1	(5t=12,11t=18,19t=33) <u>or</u> (5s=3,22s=9,19s=3) A1,A1
	Substitute their values in 3^{rd} equation State/show inconsistency <u>& state non-parallel</u> . skew	dep*M1 A1 5	State/show inconsistency <u>& state non-parallel</u> ∴ skew WWW A1
6	(i) $1 - 4ax +$	B1	
	$\frac{-45}{1.2}(ax)^2 \text{ or } \frac{-45}{1.2}a^2x^2 \text{ or } \frac{-45}{1.2}ax^2$	M1	Do not accept $\begin{pmatrix} -4\\ 2 \end{pmatrix}$ unless 10 also appears
	$\dots + 10a^2x^2$	A1 3	
	(ii) f.t. (their cf x) + b(their const cf) = 1 f.t. (their cf x^2) + b(their cf x) = -2 Attempt to eliminate 'b' and produce equation in 'a'	√B1 √B1 M1	Expect $b - 4a = 1$ Expect $10a^2 - 4ab = -2$ Or eliminate 'a' and produce equation in 'b'
	Produce $6a^2 + 4a = 2$ AEF	A1	Or $6b^2 + 4b = 42$ AEF
	$a = \frac{1}{3}$ and $b = \frac{7}{3}$ only	A1 5	Made clear to be only (final) answer
7	(i) Perform an operation to produce an equation connecting A and B (or possibly in A or in B)	M1	Probably substituting value of θ , or comparing coefficients of sin r, and/or cos r
	A = 2 B = -2	A1 A1 3	WW scores 3
	(ii) Write $4\sin\theta$ as $4(\sin\theta + \cos\theta) + B(\cos\theta - \sin\theta)$		A and B need not be numerical – but if they
	and re-write integrand as $A + \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta}$	M1	are, they should be the values found in (i).
	$\int A \mathrm{d}\theta = A\theta$	√ B1	general or numerical
	$\int \frac{B(\cos\theta - \sin\theta)}{\sin\theta + \cos\theta} d\theta = B \ln(\sin\theta + \cos\theta)$	$\sqrt{A2}$	general or numerical
	Produce $\frac{1}{4}A\pi + B \ln \sqrt{2}$ f.t. with their A,B	√A1 5	Expect $\frac{1}{2}\pi - \ln 2$ (Numerical answer only)
8	(i) $\frac{\mathrm{d}x}{\mathrm{d}t}$ or $-kx^{\frac{1}{2}}$ or $kx^{\frac{1}{2}}$ seen	M1	k non-numerical; i.e. 1 side correct
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx^{\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}t} = kx^{\frac{1}{2}}$	A1 2	i.e. both sides correct
	(ii) Separate variables or invert, + attempt to integrate *	M1	Based <u>only on</u> above eqns or $\frac{dx}{dt} = x^{\frac{1}{2}}, -x^{\frac{1}{2}}$
	Correct result for their equation after integration Subst $(t, x) = (0, 2)$ into ean containing k &/or c den?	A1 •M1	Other than omission of 'c' or substitute (5.1)
	Subst $(t,x) = (5,1)$ into eqn containing k & c dep*	M1	or substitute (0,2)
	Subst $x = 0.5$ into eqn with their $k \& c$ subst dep*	M1	
	t = 8.5(8.5355339)	A1 6	[1 d.p. requested in question]

 \checkmark

			_
9	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or $\frac{\frac{dy}{dp}}{\frac{dx}{dp}}$	M1	Or conv to cartes form & att to find $\frac{dy}{dx}$ at <i>P</i>
	$=\frac{2t}{3t^2} \text{ or } \frac{2p}{3p^2}$	A1	
	Find eqn tgt thro (p^3, p^2) or (t^3, t^2) , their gradient	M1	Using $y - y_1 = m(x - x_1)$ or $y = mx + c$
	$3py - 2x = p^3 \qquad \text{AG}$	A1 4	Do not accept <i>t</i> here
	(ii) Substitute $(-10,7)$ into given equation *	M1	to produce a cubic equation in <i>p</i>
	Satis attempt to find at least 1 root/factor dep*	M1	Inspection/factor theorem/rem theorem/t&i
	Any one root		-1 or -4 or 5 -1 -4 and 5
	(-11) (-64.16) and (12.5.25)	Al 5	All 3 sets: no f t
	(1,1), (01,10) und (125,25)		
10	(i) $(1-x^2)^{\frac{3}{2}} \rightarrow \cos^3\theta$	B1	May be implied by $\int \sec^2 \theta d\theta$
	$\mathrm{d}x \to \cos\theta \mathrm{d}\theta$	B1	
	$\frac{1}{\left(1-x^2\right)^{\frac{3}{2}}} dx \to \sec^2\theta \left(d\theta\right) \text{ or } \frac{1}{\cos^2\theta} \left(d\theta\right)$	B1	
	$\int \sec^2\theta (\mathrm{d}\theta) = \tan \theta$	B1	
	Attempt change of limits (expect 0 & $\frac{1}{6}\pi/30$)	M1	Use with $f(\theta)$; or re-subst & use 0 & $\frac{1}{2}$
	$\frac{1}{\sqrt{3}}$ AEF	A1 6	Obtained with no mention of 30 anywhere
	(ii) Use parts with $u = \ln x$, $\frac{dv}{dx} = \frac{1}{x^2}$	*M1	obtaining a result $f(x) + /-\int g(x)(dx)$
	$-\frac{1}{x}\ln x + \int \frac{1}{x^2} (\mathrm{d}x) \text{AEF}$	A1	Correct first stage result
	$-\frac{1}{x}\ln x - \frac{1}{x}$	A1	Correct overall result
	Limits used correctly	dep*M1	
	$\frac{2}{2} - \frac{1}{2} \ln 3$	A1 5	
	3 3		
	If substitution attempted in part (ii)		
	$\ln x = t$	B1	
	Reduces to $\int t e^{-t} dt$	B1	
	Parts with $u = t$, $dv = e^{-t}$	M1	
	$-\operatorname{te}^{-t}-\operatorname{e}^{-t}$	A1	
	$\frac{2}{2} - \frac{1}{2} \ln 3$	A1	
	3 3		

4725 Further Pure Mathematics 1

1	(i) 1 <u>1</u>	M1		For 2 other correct vertices seen, correct
		A 1	2	direction of shear seen
	(1, -1)	AI	2	For completely correct diagram, must include scales
	$\begin{pmatrix} 1 & 0 \end{pmatrix}$			
	(ii) $\begin{bmatrix} -1 & 1 \end{bmatrix}$	B1 B1	2	
			4	Fach ashuman assured
2		M1		Consider sum as two separate parts
2	$\frac{a}{n(n+1)(2n+1)} + bn$	Al		Correct answer a.e.f.
	$a = 6 \ b = -3$	M1	~	Compare co-efficients
		ALAI) 5	Obtain correct answers
3	(i) $7u^3 + 24u^2 - 3u + 2 - 0$	M1	5	Use given substitution
	(1) $7u + 21u - 5u + 2 = 0$	A1	2	Obtain correct equation a.e.f.
		N / 1		
	(ii) <i>EITHER</i>		2	Their c / their a
	correct value is $-\frac{3}{7}$	71110	2	
	OB			$\alpha + \beta + \gamma$
	<i>UR</i>	M1		$\alpha\beta\gamma$ or equivalent
	correct value is $-\frac{3}{7}$	A1		Obtain correct answer
			4	
4	(i) $z^* = 3 + 4i$	B1		Conjugate seen or implied
	21 +12i	B1	2	Obtain correct answer
	(ii) $3-5i$	B1		Correct $z - i$ or expansion of $(z - 1)^2$ seen
		B1ft		Real part correct
	-16 - 30i	B1ft	3	Imaginary part correct
		M1		Multiply by conjugate
	$\frac{9}{12} + \frac{12}{12}i$	Al		Numerator correct
	25 25	A1	3	Denominator correct
			8	
5		B1		AB seen or implied or 2 elements correct
		B1	2	Obtain correct answer
	(i) 1			
	$\left(-10\right)$			
	$(8 \ 16 \ -4)$	M1		Obtain a 3 x 3 matrix
	(ii) 0 0 0	AlAlAl	4	Each row (or column) correct
	6 12 - 3			
	(iii) (8)	M1		Obtain a single value
		Al	2	Obtain correct answer, must have matrix
			8	

6	(i) 2 (ii) $2\sqrt{3} + 2i$ (i) a = -6 (ii) $A^{-1} = \frac{1}{a+6} \begin{pmatrix} 1 & -3 \\ 2 & -3 \end{pmatrix}$	B1 B1 B1 B1 B1 M1 A1 B1	5 3 8 2	Horizontal straight line in 2 quadrants Through (0, 2) Straight line Through <i>O</i> with positive slope In 1 st quadrant only State or obtain algebraically that $y = 2$ Use suitable trigonometry Obtain correct answer a.e.f. decimals OK must be a complex number Use det $\mathbf{A} = 0$ Obtain correct answer Both diagonals correct
	$x = \frac{4}{a+6}, y = \frac{2-a}{a+6}$	B1ft M1 A1ft A1ft	5	Divide by det A Premultiply column by A ⁻¹ , no other method Obtain correct answers from their A ⁻¹
8	(i) $u_2 = 4, u_3 = 9, u_4 = 16$ (ii) $u_n = n^2$	M1 A1 B1	2	Obtain next terms All terms correct Sensible conjecture made
	(iii)	B1 M1 A1 A1	47	State that conjecture is true for $n = 1$ or 2 Find u_{n+1} in terms of n Obtain $(n + 1)^2$ Statement of Induction conclusion
9	(i) $\alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$ (ii) Either $\alpha + \beta = 5, \alpha\beta = 7$	M1 A1 B1 B1	2	Correct binomial expansion seen Obtain given answer with no errors seen State or use correct values
	$\alpha^{3} + \beta^{3} = 20$ $x^{2} - 20x + 343 = 0$ Or $u^{\frac{2}{3}} - 5u^{\frac{1}{3}} + 7 = 0$ $x^{3} - 20x + 242 = 0$	M1 A1 M1 A1ft M1 A1 M2 A2	6 8	Find numeric value for $\alpha^3 + \beta^3$ Obtain correct answer Use new sum and product correctly in quadratic expression Obtain correct equation Substitute $x = u^{\frac{1}{3}}$ Obtain correct answer Complete method for removing fractional powers Obtain correct answer
	$u = 20u \pm 545 = 0$			

10	(i)	M1 A1	2	Attempt to combine 3 fractions Obtain given answer correctly
	(ii) $2 + 1 - \frac{1}{2} - \frac{2}{n+1} - \frac{1}{n+2}$	M1 A1 M1 A1 M1 A1	6	Express at least first 3 terms using (i) All terms correct Express at least last 2 terms using (i) All terms correct in terms of n Show that correct terms cancel Obtain unsimplified correct answer
	(iii) $\frac{5}{2}$	B1ft	1	Obtain correct answer from their (ii)
	(iv) $\frac{2}{N+1} + \frac{1}{N+2} = \frac{7}{10}$	B1ft		Their (iii) – their (ii)
	$7N^2 - 9N - 36 = 0$	M1		Attempt to clear fractions & solve equation, Obtain correct simplified equation
	<i>N</i> = 3	A1 A1	4	Obtain only the correct answer
			13	

4726 Further Pure Mathematics 2

1 (i) Get f'(x) = $\pm \sin x/(1 + \cos x)$ M1 Reasonable attempt at chain at any stage Get f "(x) using quotient/product rule M1 Reasonable attempt at quotient/product Get $f(0) = \ln 2$, f'(0) = 0, $f''(0) = -\frac{1}{2}$ Any one correct from correct working **B**1 A1 All three correct from correct working M1 Using their values in $af(0)+bf'(0)x+cf''(0)x^2$; (ii) Attempt to use Maclaurin correctly may be implied Get $\ln 2 - \frac{1}{4}x^2$ A1√ From their values; must be quadratic Clearly verify in $y = \cos^{-1}x$ i.e. $x = \frac{1}{2}\sqrt{3}$, $y = \cos^{-1}(\frac{1}{2}\sqrt{3}) = \frac{1}{6}\pi$, or similar 2 (i) **B**1 Clearly verify in $y = \frac{1}{2}\sin^{-1}x$ Or solve $\cos y = \sin 2y$ B1 SR Allow one B1 if not sufficiently clear detail Write down at least one correct diff'al M1 Or reasonable attempt to derive; allow \pm (ii) Get gradient of -2A1 cao Get gradient of 1 A1 cao 3 Get *y*-values of 3 and $\sqrt{28}$ B1 (i) Show/explain areas of two rectangles equal *y*-value x 1, and relate to A **B**1 Diagram may be used Show $A > 0.2(\sqrt{(1+2^3)} + \sqrt{(1+2.2^3)} + \dots)$ (ii) ... (1+2.83)) M1 Clear areas attempted below curve (5 values) = 3.87(28)To min. of 3 s.f. A1 Show $A < 0.2(\sqrt{1+2.2^3}) + \sqrt{1+2.4^3} + \dots$ $...+\sqrt{(1+3^3)}$ M1 Clear areas attempted above curve (5 values) = 4.33(11) < 4.34 A1 To min. of 3 s.f. 4 Correct formula with correct rM1 May be implied (i) Expand r^2 as A + Bsec θ + Csec² θ Allow B = 0M1 Get C tan_θ B1 Use correct limits in their answer M1 Must be 3 terms Limits to $\frac{1}{12\pi} + 2 \ln(\sqrt{3}) + \frac{2\sqrt{3}}{3}$ A1 AEEF; simplified Use $x=r\cos\theta$ and $r^2 = x^2 + y^2$ (ii) B1 Or derive polar form from given equation Eliminate *r* and θ Use their definitions M1 Get $(x-2)\sqrt{x^2+y^2} = x$ A1 A.G.

5	(i)	Attempt use of product rule	
		Clearly get $x = 1$	

- (ii) Explain use of tangent for next approx. B1 Tangents at successive approx. give x>1 B1
- (iii) Attempt correct use of N-R with their derivative Get $x_2 = -1$ Get -0.6839, -0.5775, (-0.5672...)Continue until correct to 3 d.p. Get -0.567
- 6 (i) Attempt division/equate coeff. Get a = 2, b = -9Derive/quote x = 1
 - (ii) Write as quadratic in x Use $b^2 \ge 4ac$ (for real x) Get $y^2 + 14y + 169 \ge 0$ Attempt to justify positive/negative Get $(y+7)^2 + 120 \ge 0$ – true for all y

- 7 (i) Get $x(1+x^2)^{-n} \int x \cdot (-n(1+x^2)^{-n-1} \cdot 2x) dx$ Accurate use of parts Clearly get A.G.
 - (ii) Express x^2 as $(1+x^2) 1$ Get $x^2 = 1 - 1$ $(1+x^2)^{n+1} (1+x^2)^n (1+x^2)^{n+1}$ Show $I_n = 2^{-n} + 2n(I_n - I_{n+1})$ Tidy to A.G.
 - (iii) See $2I_2 = 2^{-1} + I_1$ Work out $I_1 = \frac{1}{4}\pi$ Get $I_2 = \frac{1}{4} + \frac{1}{8}\pi$

- M1 A1 Allow substitution of *x*=1
 - Not use of G.C. to show divergence
 - Relate to crossing *x*-axis; allow diagram
- M1 A1√
- A1 To 3 d.p. minimum
- M1 May be implied
- Al cao
- M1 To lead to some ax+b (allow b=0 here)
- A1 B1 Must be equations
- M1 $(2x^2 x(11 + y) + (y 6) = 0)$
- M1 Allow <, >
- A1
- M1 Complete the square/sketch
- A1
- SC Attempt diff; quot./prod. rule M1 Attempt to solve dy/dx = 0 M1 Show $2x^2 - 4x + 17 = 0$ has no real roots e.g. $b^2 - 4ac < 0$ A1 Attempt to use no t.p. M1 Justify all y e.g. consider asymptotes and approaches A1
- M1 Reasonable attempt at parts
- A1
- B1 Include use of limits seen
- B1 Justified
- M1 Clear attempt to use their first line above
- A1

B1

M1 Quote/derive $\tan^{-1}x$

A1

4726

8	(i)	Use correct exponential for $\sinh x$ Attempt to expand cube of this		
		Correct cubic		
		Clearly replace in terms of sinh		

- (ii) Replace and factorise Attempt to solve for $\sinh^2 x$ Get k > 3
- (iii) Get $x = \sinh^{-1}c$ Replace in ln equivalent Repeat for negative root

9 (i) Get $\sinh y \frac{dy}{dx} = 1$ Replace $\sinh y = y/(\cosh x)$

Replace $\sinh y = \sqrt{\cosh^2 y - 1}$ Justify positive grad. to A.G.

- (ii) Get $k \cosh^{-1}2x$ Get $k=\frac{1}{2}$
- (iii) Sub. $x = k \cosh u$ Replace all x to $\int k_1 \sinh^2 u \, du$ Replace as $\int k_2 (\cosh 2u - 1) \, du$ Integrate correctly Attempt to replace u with x equivalent Tidy to reasonable form

- B1
- M1 Must be 4 terms
- A1
- B1 (Allow RHS \rightarrow LHS or RHS = LHS separately)
- M1 Or state sinh $x \neq 0$
- M1 $(= \frac{1}{4}(k-3))$ or for k and use $\sinh^2 x > 0$
- A1 Not \geq
- M1 ($c=\pm \frac{1}{2}$); allow sinh x = c
- A1 $\sqrt{4}$ As $\ln(\frac{1}{2} + \sqrt{5}/4)$; their x
- A1 $\sqrt{}$ May be given as neg. of first answer (no need for x=0 implied)
- SR Use of exponential definitions Express as cubic in $e^{2x} = u$ M1 Factorise to $(u-1)(u^2-3u+1)=0$ A1 Solve for x = 0, $\frac{1}{2}\ln(\frac{3}{2} \pm \frac{\sqrt{5}}{2})$ A1
- M1 Or equivalent; allow \pm Allow use of ln equivalent with Chain Rule
- A1 B1 e.g. sketch
- M1 No need for *c*
- A1
- M1
- A1
- M1 Or exponential equivalent
- A1 $\sqrt{}$ No need for *c*
- M1 In their answer
- A1 cao $(\frac{1}{2}x\sqrt{4x^2-1} \frac{1}{4}\cosh^{-1}2x (+c))$

4727 Further Pure Mathematics 3

1 (a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) <i>e</i> , <i>a</i> , <i>b</i>	B1 1	For correct elements
(b) c^3 has order 2	B1	For correct order
c^4 has order 3	B1	For correct order
c^5 has order 6	B1 3	For correct order
	6	
2. $m^2 - 8m + 16 = 0$	M1	For stating and attempting to solve auxiliary equ
$\Rightarrow m = 4$	A1	For correct solution
\Rightarrow CF $(y =) (A + Bx)e^{4x}$	A1√	For CF of correct form. f.t. from <i>m</i>
For PI try $y = px + q$	M1	For using linear expression for PI
$\Rightarrow -8p + 16(px+q) = 4x$		
$\Rightarrow p = \frac{1}{4} q = \frac{1}{8}$	A1 A1	For correct coefficients
\Rightarrow GS $y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}$	B1√ 7	For $GS = CF + PI$. Requires $y = 1$. f.t. from CF and PI with
		2 arbitrary constants in CF and none in PI
	7	
3 (i) line segment <i>OA</i>	B1 B1 2	For stating line through <i>O OR A</i> For correct description AEF
(ii) $(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = \overrightarrow{AP} \times \overrightarrow{BP}$	B1	For identifying $\mathbf{r} - \mathbf{a}$ with \overrightarrow{AP} and $\mathbf{r} - \mathbf{b}$ with \overrightarrow{BP} Allow direction errors
$= AP BP \sin\pi$. $\hat{\mathbf{n}}=0$	B1 2	For using \times of 2 parallel vectors = 0
		$OR \sin \pi = 0 \text{ or } \sin 0 = 0$
	B1	For stating line
(iii) line through O	B1	For stating through <i>O</i>
parallel to <i>AB</i>	B1 3	For stating correct direction
	7	SR For \overrightarrow{AB} or \overrightarrow{BA} allow B1 B0 B1
4 $(C+iS=)$ $\int_0^{\frac{1}{2}\pi} e^{2x} (\cos 3x + i \sin 3x) (dx)$		
$\cos 3x + i \sin 3x = e^{3ix}$	B1	For using de Moivre, seen or implied
$\int_0^{\frac{1}{2}\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_0^{\frac{1}{2}\pi}$	M1* A1	For writing as a single integral in exp form For correct integration (ignore limits)
$= \frac{2-3i}{4+9} \left(e^{(2+3i)\frac{1}{2}\pi} - e^0 \right) = \frac{2-3i}{13} \left(-i e^{\pi} - 1 \right)$	A1	For substituting limits correctly (unsimplified) (may be earned at any stage)
	M1 (dep*)	For multiplying by complex conjugate of 2+3i
$= \left\{ \frac{1}{13} \left(-2 - 3e^{\pi} + i(3 - 2e^{\pi}) \right) \right\}$	M1 (dep*)	For equating real and/or imaginary parts
$C = -\frac{1}{13} \left(2 + 3\mathrm{e}^{\pi} \right)$	A1	For correct expression AG
$S = \frac{1}{13} \left(3 - 2e^{\pi} \right)$	A1	For correct expression
	8	

5 (i) IF $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ $OR x \frac{dy}{dx} + y = x \sin 2x$	M1	For correct process for finding integrating factor OR for multiplying equation through by x
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\sin 2x$	A1	For writing DE in this form (may be implied)
$\Rightarrow xy = \int x \sin 2x (\mathrm{d}x)$	M1	For integration by parts the correct way round
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{2}\int \cos 2x(dx)$	A1	For 1st term correct
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \ (+c)$	M1	For their 1st term and attempt at integration of $\frac{\cos kx}{\sin kx}$
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{c}{x}$	A1 6	For correct expression for <i>y</i>
(ii) $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right) \Longrightarrow \frac{2}{\pi} = \frac{1}{\pi} + \frac{4c}{\pi} \Longrightarrow c = \frac{1}{4}$	M1	For substituting $\left(\frac{1}{4}\pi,\frac{2}{\pi}\right)$ in solution
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{1}{4x}$	A1 2	For correct solution. Requires $y = $.
(iii) $(y \approx) -\frac{1}{2}\cos 2x$	B1√ 1	For correct function AEF f.t. from (ii)
	9	
6 (i)		<i>Either coordinates or vectors may be used</i> Methods 1 and 2 may be combined, for a maximum of 5 marks
METHOD 1		
State $B = (-1, -7, 2) + t(1, 2, -2)$	M1	For using vector normal to plane
On plane $\Rightarrow (-1+t) + 2(-7+2t) - 2(2-2t) = -1$	M1 M1	For substituting parametric form into plane For solving a linear equation in t
$\Rightarrow t = 2 \Rightarrow B = (1, -3, -2)$	Al	For correct coordinates
$AB = \sqrt{2^2 + 4^2 + 4^2} OR 2\sqrt{1^2 + 2^2 + 2^2} = 6$	A1 5	For correct length of <i>AB</i>
METHOD 2		
$AB = \left \frac{-1 - 14 - 4 + 1}{\sqrt{2} - 2} \right = 6$		
$ \sqrt{1^2 + 2^2 + 2^2} $	M1	For using a correct distance formula For correct length of AB
<i>OR</i> $AB = \mathbf{AC} \cdot \mathbf{AB} = \frac{[6, 7, 1] \cdot [1, 2, -2]}{\sqrt{1^2 + 2^2 + 2^2}} = 6$	AI	For contect length of AB
$B = (-1, -7, 2) \pm 6 \frac{(1, 2, -2)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	For using $B = A + \text{length of } AB \times \text{unit normal}$
$B = (-1, -7, 2) \pm (2, 4, -4)$	B1	For checking whether + or – is needed
B = (1, -3, -2)	A1	(substitute into plane equation) For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm [6, 7, 1], \pm [6, -3, 0], \pm (0, 10, 1)$	M1	For finding vector product of two relevant vectors
Obtain <i>k</i> [1, 2, -20]	A1	For correct vector n
$\theta = \cos^{-1} \frac{\left [1, 2, -2] \cdot [1, 2, -20] \right }{\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2 + 20^2}}$	M1* M1 (dep*)	For using scalar product of two normal vectors For stating both moduli in denominator
$\theta = \cos^{-1} \frac{45}{\sqrt{9}\sqrt{405}} = 41.8^{\circ} (41.810^{\circ}, 0.72972)$	$ \begin{array}{c} \mathbf{A1} \mathbf{} \\ \mathbf{A1} \mathbf{6} \\ \hline 11 \end{array} $	For correct scalar product. f.t. from n For correct angle

7 (i) (a) $\sin \frac{6}{8}\pi = \frac{1}{\sqrt{2}}$, $\sin \frac{2}{8}\pi = \frac{1}{\sqrt{2}}$	B1	1	For verifying $\theta = \frac{1}{8}\pi$
(b)	M1		For sketching $y = \sin 6\theta$ and $y = \sin 2\theta$ for 0,, θ ,, $\frac{1}{2}\pi$ <i>OR</i> any other correct method for solving $\sin 6\theta = \sin 2\theta$ for $\theta \neq k \frac{\pi}{2}$
			OR attempt to verify a reasonable guess for θ
$\theta = \frac{3}{8}\pi$	A1	2	For correct θ
(ii) Im $(c+is)^6 = 6c^5s - 20c^3s^3 + 6cs^5$	M1 A1		For expanding $(c+is)^6$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms
$\sin 6\theta = \sin \theta \left(6c^5 - 20c^3(1 - c^2) + 6c(1 - c^2)^2 \right)$	M1		For using $s^2 = 1 - c^2$
$\sin 6\theta = \sin \theta \left(32c^5 - 32c^3 + 6c \right)$	A1		For any correct intermediate stage
$\sin 6\theta = 2\sin \theta \cos \theta \left(16c^4 - 16c^2 + 3\right)$	A1		For obtaining this expression correctly
$\sin 6\theta = \sin 2\theta \left(16\cos^4\theta - 16\cos^2\theta + 3\right)$		5	AG
(iii) $16c^4 - 16c^2 + 3 = 1$	M1		For stating this equation AEF
$\Rightarrow c^2 = \frac{2 \pm \sqrt{2}}{4}$	A1		For obtaining both values of c^2
$-$ sign requires larger $\theta = \frac{3}{8}\pi$	A1	3	For stating and justifying $\theta = \frac{3}{8}\pi$
	1	1	Calculator OK if figures seen

8 (i) Group A: $e = 6$ Group B: $e = 1$ Group C: $e = 2^{0} OR 1$ Group D: $e = 1$ (ii) EITHER OR	B1 B1 2	For any two correct identities For two other correct identities AEF for <i>D</i> , but not " $m = n$ "
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1* B1*	For showing group table <i>OR</i> sufficient details of orders of elements <i>OR</i> stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups <i>A</i> , <i>B</i> , <i>C</i> for another of groups <i>A</i> , <i>B</i> , <i>C</i>
$A \not\cong B$ $B \not\cong C$ $A \cong C$	B1 (dep*) B1 (dep*) B1 (dep*) 5	For stating non-isomorphic For stating non-isomorphic For stating isomorphic
(iii) $\frac{1+2m}{1+2n} \times \frac{1+2p}{1+2q} = \frac{1+2m+2p+4mp}{1+2n+2q+4nq}$ = $\frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} = \frac{1+2r}{1+2s}$	M1* M1 (dep*) A1 A1 4	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown For identifying as correct form, so closed SR $\frac{\text{odd}}{\text{odd}} \times \frac{\text{odd}}{\text{odd}} = \frac{\text{odd}}{\text{odd}}$ earns full credit
(iv) Closure not satisfied Identity and inverse not satisfied	B1 B1 2	SR If clearly attempting to prove commutativity, allow at most M1 For stating closure For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 <i>OR</i> B0 B1
	13	

4728 Mechanics 1

1	70 x 9.8 or 70g	B1	=686
	70 x 0.3	BI	=21 + cys [70(9 8+0 3) gets B1B1M1]
	707 N	Al	
		[4]	
2	(40 + 40 + 2)	D1	Difference of terms accent with a
2	$+/-(40 \times 4 - 60 \times 5)$ $+/-(140 + 60) \times 5$	B1 B1	Sum of terms accept with g
	$+/-(40 \times 4 - 60 \times 3) = +/-(40 + 60) \times 3$	M1	Accept inclusion of g in equation
	Speed = 0.2 ms^{-1}	Al	Not if g used. SR $40x4-60x3=[40+60]$ v;
	1		v=0.2, as heavier, award 5 marks
	Same as heavier or opposite lighter/"she"	B1	"Left" requires diagram for B1
		[5]	If same direction before collision award
			B0B1M1A0B0
3i		M1	Applies Pythagoras, requires +.
	$\sqrt{(12^2+15^2)}$	A1	
	19.2 N	A1	
		Ml	trig and R included between X and Y
	$\tan\theta = 12/15$, $\tan\theta = 15/12$, $\sin\theta = 12/19.2$, $\cos\theta = 15/19.2$	Al	Accept cv 19.2 A court 020 or 20 or art 20 from holow
	Bearing = $0.38.7$	AI [6]	(not given if X and V transnosed)
311	E = 19.2	B1ft	ft cv 19 2
511	Bearing = $180 + 38.7 = 219^{\circ}$	B1ft	180+cv 38.7(-360) or correct answer
	5	[2]	, , , , , , , , , , , , , , , , , , ,
4i	v = dx/dt	M1	Uses differentiation, may be seen in (ii)
	$v = 4t^3 - 8 \ge 2t$	A1	Accept with +c
	$v(2) = 4x2^3 - 8x2x2$	M1	Substitutes 2 in cv v, explicit
	= 0 AG	A1	A0 if +c
	$x(2) = 2^4 - 8 x 2^2 + 16 = 0 $ AG	B1	Substitutes 2 in displacement, explicit
4ii	a = dy/dt	[5] M1	Uses differentiation of v formula
	$a = 12t^2 - 16$	A1	Accept with $+c$
	$a(2) = 12 \times 2^2 - 16 = 32 \text{ ms}^{-2}$	A1	A0 with $+c$
		[3]	
5ia	250a = -150	M1	Values used in N2L for trailer F=+/-150
	$a = -0.6 \text{ ms}^{-2}$ AG	A1	Or -ve convincingly argued
		[2]	
5ib	000 0 (D (000 (000 (000) 0 (D (000 150	Ml	Applies N2L to car or car/trailer with
	900 x - 0.6 = D -600 or (900+250) x - 0.6 = D -600 - 150 D = 60 N		(including T if T=0 used later)
	D = 00 N	[3]	(including 1 if 1–0 used later)
5ic	$15^2 = 18^2 + 2x (-0.6)s$	M1	Uses $v^2 = u^2 + 2(+/-0.6)s$ with 15, 18
	s = 82.5 m	A1	Positive, allow from $18^2 = 15^2 + 2x0.6s$
		[2]	
5iia		M1	Applies N2L to car+trailer with F(driving)
			F(resisting), F(wt cmpt-allow without g),
	$(000+250)_{2} = 0.00$ 600 150	A 1	or each part, as above and 1. $000_0 = 080$, $600 \pm (000_0 0 g sin 2)$ T
5jih	+/-(900+250)a = 900 - 000 - 150	AI	$250a = 7.150 + /-250x9 8 \sin 3$
5110	$a = 0.713 \text{ ms}^{-2}$	A1	Allow (art) 0.71 from correct work
		[4]	
		MÌ	N2L for trailer, cv a, with correct number
	$250 \ge 0.713 = T - 150 + 250 \ge 9.8 \le 10^{-1}$	A1	of forces of correct type. Or for car
	T. 200 N		900x0.713 = -T-600 + 900x9.8sin3 + 980
	I = 200 N		Anything rounding to 200 (3st)
1		3	

4728

6i	$4.9 = \mu x 14.7$		M1	Uses $F = \mu R$
	$\mu = 1/3$	AG	A1	Allow 0.333 or 0.3 recurring
	•		[2]	č
6iia			M1	3 force vertical equation
onu	$R + 4.9 \sin 30 = 14.7$		A 1	s force vertical equation
	P = 12.25 N		A 1	Accept 12.2 or 12.3
	R = 12.25 N E = 12.25 ··· 1/2		AI M1	Accept 12.2 of 12.5 Uses $\mathbf{E} = \mathbf{v} \mathbf{P}$ with new \mathbf{P} (may be seen in
	$F = 12.23 \times 1/3$ F = 4.09(222) NL $F = 40(12)$ NL			Uses $F = \mu K$ with new K {may be seen in
	F = 4.08(333) N [or 49/12 N]		AI	{part b
~			[5]	
611b	m = 14.7/9.8 = 1.5 kg		B1	
			M1	N2L horizontally with 2 relevant forces,
				including 4.9sin/cos30
	$4.9\cos 30 - 4.08(333) = 1.5a$		A1	Allow cv(F) SR Award A1 if m=14.7 used
	$a = 0.107 \text{ ms}^{-2}$		A2	SR A1 for 0.11, 0.109
6iii			[5]	or art 0.011 from $m = 14.7$
	$\mu R = (14.7 - 4.9\cos(30))/3$		Bĺ	3 49 accept 3 5
	Horizontal component of force = $4.9\sin 30$		B1	245 accept 24 or 25
	Horizontal component of force $< \Im \mathbf{R}$		M1	Comparing two values
	Friction $= 2.45 \text{ N}$		Λ1	Not 2.4 or 2.5: Explicit (M1 essential)
	FIICUOII = 2.45 IN		A1 [4]	Not 2.4 of 2.5, Explicit (101 essential)
			[4]	
<i>a</i> :	0.5 1.4 0.02		1.61	11 05142
/1	$s = 0.5 x 1.4 x 0.8^{2}$		MI	Uses $s = 0.5x1.4t^2$
	s = 0.448 m		Al	Not 0.45
	$v = 1.4 \ge 0.8$		M1	Uses $v = 1.4t$
	$v = 1.12 \text{ ms}^{-1}$		A1	
			[4]	
7ii	$0^2 = 1.12^2 - 2 \ge 9.8s$		M1	Uses $0^2 = u^2 - 2gs$ or $u^2 = 2gs$
	s = 0.064 m		A1	Allow verification
	0 = 1.12 - 9.8t (t = 0.114s)		M1	or $0.064 = 1.12t - 4.9t^2$
	t = (0.114 + 0.8) = 0.9148		A1	Allow 0.91 {or $0=1.12t-4.9t^2$ and halve t
			[4]	
7111	Scalene triangle base on t axis		B1	NB Award A1 for 0.91 on t axis if total
/ 111	right adda steeper and terminates on axis or cros	505	D1	time not given in (ii)
	and terminates on axis, or cross $a_{x,y}$	303	[2]	time not given in (ii)
7:	axis at $t = 0.91$		[4] M1	Laga NOL for A or D with attained at
/1V			IVI I	Uses N2L for A or B with attempt at
				2 forces
			AI	Either
	1.4xA = 9.8xA - 5.88 or 1.4xB = 5.88 - 9.8xB		Al	
	A = 0.7		Al	Not 0.53
7va	B = 0.525		[4]	
			M1	Uses tension and 0.5g without particle
	$T = 0.5 \times 9.8 + 2 \times 5.88$			weights
7vb	T = 16.66 N		A1	Allow 16.7
			[2]	
	T = 4.9 N		B1	
			[1]	
			L*J	1

4729 Mechanics 2

1 (i)	12 x cos55°	M1		
	6.88 m s ⁻¹	A1 2		
(ii)	12 x cos55° x 0.65	M1		
	(\pm) 4.47 m s ⁻¹	A1 2	0.65 x their (i)	4
2	$F = 0.2 \text{ mg } \cos 30^{\circ}$	M1	=	
		A1	$= (1.6974 \text{m}) (49\sqrt{3}/50 \text{m})$	
	0.2mgcos30° x d	B1	a=0.2gcos30°+gsin30°	
	mg x d x sin30°	B1	$a = (\pm) 6.60$	
	$d=\frac{1}{2}x25/(0.2x9.8\cos 30^\circ + 9.8x\sin 30^\circ)$	M1	$0 = 5^2 - 2x6.60d$	
	1.89 m	A1 6		6
3	direction of R perp. to wall	B1		
	R at 70° to rod	B1	10° to horiz.	
	$0.8 \ge 25\cos 60^\circ = 1.6 \ge R \sin 70^\circ$	M1	moments about A	
	0.8 x 25 cos60°	A1		
	1.6 x R sin70°	A1		
	R = 6.65 N	A1 6		6

4 (i)	$45\ 000/v = kv$	M1	
	k = 50	A1 2	AG
(ii)	$45\ 000/20 - 50x20 = 1200a$	M1	
		A1	
	$a = 1.04 \text{ m s}^{-2}$	A1 3	
(iii)	$P/15 = 50x15 + 1200x9.8sin10^{\circ}$	M1	
		A1	
	41 900 W	A1 3	8

5 (i)	2mu - 3kmu = -mu + kmv	M1	
	v =	. M1	
	v = 3u(1 - k)/k	A1	
			3u/k - 3u
	(0 <) k < 1	A1 4	$not \le 1$
(ii)	I = mu - 2mu	M1	or $km(3u/k - 3u + 3u)$
	3mu	A1 2	+ only
(iii)	$v = \pm 3u$	B1	
	e = (u/2 + 3u)/4u	M1	
	e = 7/8 or 0.875	A1 3	9

(i)(a)	$T_{abc} 45^{\circ} - 2.04$	M1	Posolving vortically
0 (I)(a)	$1 \cos 45^\circ = 2.94$ T = 4.16 N		Resolving vertically
(1-)	1 - 4.10 N	AI Z	AG
(D)	$1\cos 45^\circ + 1 = 0.3 \times 1.96 \omega$	IVI I	calculates $V = 0.81$
	(res. noriz.)	Al	(Max 2/3)
(1)	$\omega = 3.47 \text{ rad s}^{-1}$	Al 3	~
(ii)(a)	$T\cos 30^\circ + T\cos 60^\circ = 2.94$	Ml	Resolving vertically
		Al	
	T = 2.15 N	Al 3	
(b)	$T\cos 30^{\circ} + T\cos 60^{\circ} = 0.3v^{2}/1.5$	MI	calculates $\omega = 2.56$
	(res. horiz.)	Al	(Max 2/3)
	$v = 3.83 \text{ m s}^2$	Al 3	11
7(i)	$0 = (175 \sin \theta)^2 - 2x9.8x650$	M1	
/ (1)	0 - (1758110) - 2x9.8x050		
		Al	
(11)	$\theta = 40.2^{\circ}$	AI 3	
(11)	Attempt at t_1 , t_2 , t_{top} or t_{total}	MI	$650 = 175 \sin 55^\circ$.t - 4.9t ² etc
	5.61, 23.65, 14.63, 29.26	Al	
	$t_2 - t_1$ or $2(t_{top} - t_1)$ or $t_{total} - 2t_1$	MI	
		AI	
	$\frac{1}{2}$	A 1 5	
	time difference – 18.0	AI 5	
(:::)	175 550 (100 4)	D1	$\sim \pi K E 1/m r^2$
(111)	$v_h = 1/5\cos 55^\circ$ (100.4)		OF KE $\frac{1}{2}$ (D1) DE mar 0.8 $\frac{1}{2}$ (50)
	$V_v = 1/5\sin 55^\circ - 9.8 \times 5.61$		(B1) PE mx9.8x650 $\sqrt{(175^2 - 2.0.8)}$ (50)
	speed = $\sqrt{(88.4 + 100.4)}$		V = V(1/5 - 2x9.8x650)
	134 111 8	AI 4	12
8 (i)	$(2x4x\sin(\pi/2)/3x\pi/2)$	M1	or $4r/3\Pi$
0(1)	1 70	A1 2	AG
(ii)(a)	$\frac{1}{r} x d(8x^2) - \Pi x d^2/2 = 10x8x^20d$	M1	$r_{13/9r} =$
()()	$12 \times \Pi \times \Lambda^2/2 \times d$		$64_{y}4+38_{0}x^{1}2+32_{y}18$ (1208.8)
	12x11x472x0 10x8x20(d) (1600)	Δ1	64x4+56.9x12+52x16 (1296.6)
	$(8x^{20}-\Pi x^{2}/2) (d)$ (134.9)	Al	38 9x12
	$(12x\Pi x 4^2/2)(d)$ (191.9)	A1	32x18
	$\frac{1}{x} = 0.62 \text{ cm}$	A1 5	AG
(ii)(b)	$\frac{1}{2} = \frac{1}{2} $	M1	
(11)(11)	$y xd(8x20-11x4^{-7}2)=4x8x20d-$	1011	or $64x4=42.7+38.9 y$
	$1.7 \times 11 \times 4^2/2 \times d$		_
	4x8x20 (d)	Al	y = 5.49
	1.7d x Π x 4 ² /2 (13.6 Π)	A1M1	$135\overline{v} = 32x4 + 389x549 + 64x4$
		A1 4	
(11)	y - 4.43 cm		
(111)	20cos10° x T	BI	= or
	15cos10° x 9.63	Bl	10.6 (A to com)
	15sin10° x 4.43	B1	34.7°∠comAH
	20cos10°.T=15cos10°x9.63-	M1	$=15x10.6xcos34.7^{\circ}$
	15sin10°x4.43 (needs 3 parts)		
	T = 6.64 N	A1 5	16

4730 Mechanics 3

1	(i) $[0.5(v_x - 5) = -3.5, 0.5(v_y - 0) = 2.4]$	M1		For using $I = m(v - u)$ in x or y direction					
	Component of velocity in x-direction is –2ms ⁻¹	A1							
	Component of velocity in y-direction is 4.8ms ⁻¹	A1							
	Speed is 5.2ms ⁻¹	A1	4	AG					
SR For	SR For candidates who obtain the speed without finding the required components of velocity (max 2/4)								
	Components of momentum after impact are -1 and 2.4 Ns	B1							
	Hence magnitude of momentum is 2 6 Ns and required	B1							
	speed is $2.6/0.5 = 5.2 \text{ ms}^{-1}$	DI							
	(ii)	M1		For using $I = m(0 - y)$ or					
	(1)	1011		$I = v_{x}$ component of 1^{st} impulse					
	Component is 2 (Na	A 1	2	$I_y = -y$ -component of 1 impulse					
	Component is -2.418	AI	Z						
2	(\mathbf{i})	M1		For 2 term equation each term					
2	(1)	1411		representing a relevant moment					
		A 1		representing a relevant moment					
	$50x1\sin p = /5x2\cos p$	AI							
	$\tan \beta = 3$	A1	3	AG					
	(ii) Horizontal force is 75N	R1							
	Vertical force is 50N	DI DI	2						
+		MI		Ean taling many anto all and A fan tha					
		IVI I		For taking moments about A for the					
		. 1		whole of for AB only					
	For not more than one error in	Al		Where $\tan \alpha = 0.75$					
	$Wx1\sin\alpha + 50(2\sin\alpha + 1\sin\beta) =$								
	$75(2\cos\alpha + 2\cos\beta)$ or Wy1sin α +								
	$75(2003\alpha + 2003\beta)$ of watshind +								
	$50x2\sin\alpha = 75x2\cos\alpha$								
	0.6W + 107.4 = 167.4 or $0.6W + 60 = 120$	A1							
	W = 100	A1	4						
	L		T						
3	(1)	M1		For using the principle of conservation					
				of momentum in the i direction					
	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1							
		M1		For using NEL					
	(4+8)e = b - a $(12e = b - a)$	A1							
	Component is 4e ms ⁻¹ to the left	A1	5	'to the left' may be implied by					
				a = -4e and arrow in diagram					
	(ii) $b = 8e ms^{-1}$	B1ft		ft b = $-2a$ or b = $a + 12e$					
		M1		For using 'i component of A's velocity					
		-		remains unchanged'					
	$(8e)^2 = (4e)^2 + v^2$	A1ft		$ft b^2 = a^2 + y^2$					
	v = 4	A1	4						
L	· ·	111		1					
4	(i) $[mg - 0.49mv = ma]$	M1		For using Newton's second law					
1	dv	A1							
	$mv \frac{dv}{dr} = mg - 0.49 mv$								
	$\begin{bmatrix} ux \\ v(dy + dx) \end{bmatrix}$	M1		For relevant manipulation					
	$\left \frac{v(uv)}{g} - \frac{ux}{0} \frac{y}{49} \right = 1$	1111							
		M1		For synthetic division of y by					
	$\left \frac{v}{0.8 - 0.40} = \frac{-1}{0.40} \left \frac{(9.8 - 0.49 v) - 9.8}{0.8 - 0.40} \right \right $	1411		a = 0.40 y or equivalent					
	$\begin{bmatrix} 5.0 - 0.49 & 0.49 & 0.49 \\ (20) & t \end{bmatrix}$	A 1	_	g - 0.49v, or equivalent					
	$\left(\frac{20}{20-v}-1\right)\frac{dv}{dx} = 0.49$	AI	С	AU					
 		M1	+	For senarating the variables and					
	(11)	1111		integrating the variables and					
	20	D1		integrating					
	$\int \frac{20}{r^2} dv = -20 \ln(20 - v)$	RI							
	$\int 20 - v$								
	$-20 \ln(20 - v) - v = 0.49x$ (+C)	Alft							
	$[-20 \ln 20 = C]$	M1		For using $v = 0$ when $x = 0$					
	$x = 40.8(\ln 20 - \ln(20 - v)) - 2.04v$	A1	5	Accept any correct form					

5	(j)	M1		For using Newton's second law with a =
C				
	$mgsin30^{\circ} = 0.75mgx/1.2$	A1		°
	Extension is 0.8m	Δ1	3	AG
	(ii) DE loss = $mg(1, 2 \pm 0, 8) sin 20^{\circ}$	D1		
	(ii) $\Gamma E 1088 - \text{Ing}(1.2 \pm 0.8)\text{Sin 50}$	DI		
	(IIIg) (IIIg) (IIIg) (IIIg)	D1		
	$EE gain = 0.75ing(0.8) / (2x1.2) \qquad (0.2ing)$	DI M1		En en en etien esti heren en en en etiene
	$\left[\frac{\gamma_2}{2} \text{ mv} = \text{mg} - 0.2 \text{mg}\right]$	IVI I		For an equation with terms representing
		A 1	4	PE, KE and EE in linear combination
	Maximum speed is 3.96ms	Al	4	
	(11) PE loss = $mg(1.2 + x)sin30^{\circ}$ or	BItt		It with x or $d - 1.2$ replacing 0.8 in (11)
	mgdsin30°			
	$EE gain = 0.75 mgx^2/(2x1.2)$ or	B1ft		ft with x or $d - 1.2$ replacing 0.8 in (ii)
	$0.75 \text{mg}(d - 1.2)^2/(2 \times 1.2)$			
	$[x^2 - 1.6x - 1.92 = 0, d^2 - 4d + 1.44 = 0]$	M1		For using PE loss = EE gain to obtain a
				3 term quadratic in x or d
	Displacement is 3.6m	A1	4	
Alternat	ive for parts (ii) and (iii) for candidates who use Newton's se	cond law a	nd a =	v dv/dx:
In the fo	blowing x, y and z represent displacement from equil, pos^n , e	xtension, a	nd dist	ance OP respectively.
	$\int [mv dv/dx = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2]$	M1	1	For using N2 with $a = v dv/dx$
	$mv dv/dv = mgsin30^{\circ} - 0.75mgv/1.2$			
	$mv dv/dy = mgsin30^{\circ} - 0.75mg(z - 1.2)/1.21$			
	$v^2/2 = -5gx^2/16 + C$ or	Δ1		
	$v^{2}/2 = 3gx/10^{+} \text{C or}$ $v^{2}/2 = gy/2 - 5gy^{2}/16 + C \text{ or}$	A 1		
	$v^{2}/2 = gy/2 = 3gy/10 + C or$ $v^{2}/2 = 5gz/4 = 5gz^{2}/16 + C$			
	V/2 = 3g2/4 = 3g2/10 + C $IC = 0.6g + 5g(-0.8)^2/16 \text{ or } C = 0.6g \text{ or}$	M1		Expressing $y^2(0, 8)$ or $y^2(0)$ or $y^2(1, 2) =$
	$C = 0.6a + 5a(1.2/4) + 5a(1.2)^{2/16}$	1011		$2(a \sin 20^{\circ})$ 1.2 as appropriate
	C = 0.09 - 39(1.2/4) + 39(1.2)/10 $z^2 = (5z^2/9 + 1.0)z = zz^2 - (5$	A 1		2(g sinso)1.2 as appropriate
	v = (-5x/8 + 1.0)g or v = (y - 5y/8 + 1.2)g or v = (52/2)	AI		
	-5Z/8 - 0.9)g	1.01		$\Sigma = \frac{2}{2} $
	(11) $[v_{max}] = 1.6g \text{ or } 0.8g - 0.4g + 1.2g \text{ or } 5g - 2.5g$	MI		For using $v_{max}^2 = v^2(0)$ or $v^2(0.8)$ or
	-0.9g			$v^{2}(2)$ as appropriate
	Maximum speed is 3.96ms ⁻¹	Al		
	(iii) $[5x^2 - 12.8 = 0 \rightarrow x = 1.6,$	M1		For solving $v = 0$
	$5y^2 - 8y - 9.6 = 0 \Rightarrow y = 2.4,$			
	$5z^2 - 20z + 7.2 = 0 \rightarrow z = 3.6$]			
	Displacement is 3.6m	A1	8	
Alternat	ive for parts (ii) and (iii) for candidates who use Newton's se	cond law a	ind SH	M analysis.
	$[m\ddot{x} = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2 \rightarrow$	M1		For using N2 with
	$\ddot{v} = \omega^2 v \cdot v^2 = \omega^2 (\omega^2 - v^2)^2$			$\mathbf{v}^2 = \omega^2 (\mathbf{a}^2 - \mathbf{x}^2)$
	$x^{2} = 5\alpha(a^{2} - w^{2})/9$	A 1		
	v = 3g(a - x)/8	AI M1		$\Gamma_{\text{construct}} = -\frac{2}{2}(0.8)$
		IVI I		For using $V(-0.8) = 2(-1.200)1.2$
				$2(gsin30^{\circ})1.2$
	$v^{2} = 5g(2.56 - x^{2})/8$	Al		
	(11) $[v_{max}^2 = 5g \times 2.56 \div 8]$	MI		For using $v_{max}^2 = v^2(0)$
	Maximum speed is 3.96ms ⁻¹	A1		
	(iii) $[2.56 - x^2 = 0 \rightarrow x = 1.6]$	M1		For solving $v = 0$
	Displacement is 3.6m	A1		

6	(i) $[\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + 2mg]$	M1		For using the principle of conservation
				of energy
	Speed is 3.13ms^2	Al M1		For using Nouton's second low
	$\begin{bmatrix} 1 - 111V \\ 1 \end{bmatrix}$	IVII		horizontally and $a = v^2/r$
	Tension is 1.96N	Alft	4	nonzonaný ana a vyn
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using $T = 0$ (may be implied)
	$v^2 = -2g\cos\theta$	A1		
		M1		For using the principle of conservation
	$\frac{1}{2}m7^2 = \frac{1}{2}my^2 + mg(2 - 2\cos\theta)$	Al		orenergy
	$\begin{bmatrix} -2 \cos \theta = 49 - 4 + 4 \cos \theta \end{bmatrix}$	M1		For eliminating v^2
	$\begin{bmatrix} -2g\cos\theta - 4y - 4g + 4g\cos\theta \end{bmatrix}$	A1		May be implied by answer
	O = OO C	Δ1	8	way be implied by answer
Alternat	0 = 99.6	ЛІ	0	
Anema	(ii) $[T_{max} = mx^2/r]$	M1	1	For using Newton's second law radially
	$\left[1 - \operatorname{Ingcos} U - \operatorname{Inv} / 1\right]$	M1		For using the principle of conservation
		1011		of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[T - \operatorname{mgcos} \theta = \operatorname{m}(49 - 4g + 4g\cos\theta)2]$	M1		For eliminating v^2
		M1		For using $T = 0$ (may be implied)
	$-2g\cos\theta = 49 - 4g + 4g\cos\theta$	Alft		ft error in energy equation
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	
L		1	ų	
7	(i) $T = 4mg(4 + x - 3.2)/3.2$	B1		
	[ma = mg - 4mg(0.8 + x)/3.2]	M1		For using Newton's second law
	$4\ddot{x} = -49x$	Al	3	AG
	(ii) Amplitude is 0.8m	B1		(from 4 + A = 4.8)
	Period is $2\pi / \omega$ s where $\omega^2 = 49/4$	BI		
		M1		String is instantaneously slack when
				shortest (4 - $A = 3.2 = L$). Thus required
	Slack at intervals of 1.8s	A1	4	AG
	(iii) $[ma = -m\sigma \sin A]$	M1		For using Newton's second law
				tangentially
	mL $\ddot{\theta}$ = -mgsin θ	A1		
	For using $\sin\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	A1	3	AG
	$-(g/L)\theta$			
	(iv) $[\theta = 0.08\cos(3.5x0.25)] (= 0.05127)$	M1		For using = $_{0}\cos\omega t$ where $\omega^{2}=12.25$
				(may be implied by $\dot{\mathcal{G}} = -\omega_{0} \sin\omega t$)
	$[\dot{\theta} = -3.5(0.08)\sin(3.5x0.25)],$	M1		For differentiating $= 0 \cos \omega t$ and
	$\dot{\theta}^2 = 12.25(0.08^2 - 0.05127^2)$			using \mathcal{G} or for using
				$\dot{\theta}^2 = \omega^2 (\theta_o^2 - \theta^2)$ where $\omega^2 = 12.25$
	$\dot{\theta} = \pm 0.215$	A1		May be implied by final answer
	v = -1.0215 [v = 0.215x9.8/12.25]	M1		$\mathbf{F}_{a} = \mathbf{I} \cdot \mathbf{\hat{D}}_{a} = \mathbf{I} \cdot \mathbf{\hat{D}}_{a}$
			1	FOLUSING $v = L_{2}$ and $L = g/0$
	Sneed is 0.172 ms ⁻¹	A 1	5	

4732 Probability & Statistics 1

Penalise over	er-rounding only once in paper.	-	
1ia	5! or ${}^{5}P_{5}$	M1	
	= 120	A1 2	
h	$41 \text{ or } {}^{4}\text{P}$ seen	M1	$ar 2 \times 31 ar 21 \times 31 ar 21 \times {}^{3}P$
U	41×2	Midan	$012 \times 51 0121 \times 51 0121 \times 13$
	4! × 2	Mildep	$2 \times 3! \times 4$
	48	AI 3	
ii	$^{1/3}C_2 \text{ or } ^{1/}_{5} \times \frac{1}{4} \times 2 \text{ or } 0.4 \times 0.25 \text{ or } ^{2/}_{5P2}$	M1	Allow M1 for ${}^{5}C_{2}$ or ${}^{1}/_{5} \times {}^{1}/_{4}$ or ${}^{1}/_{20}$
			or $\frac{1}{5} \times \frac{1}{5} \times 2$ or $\frac{2}{25}$ oe
	$= \frac{1}{10}$	A1 2	
Total	10	7	
2;	$\binom{4}{3} \times \binom{1}{3} = 0$, M1	Allow M1 for $(4/)^4 \times (1/)$
21	$\binom{75}{64}$ $\binom{75}{02}$ $\binom{75}{22}$		Allow WIT IOI (75) X (75)
	$= \frac{1}{625}$ or 0.102 (3 SIS)	AI 2	4
ii	$(4/5)^4$ alone		Allow $(\frac{4}{5})^3$ or $(\frac{4}{5})^3$; not 1 - $(\frac{4}{5})^4$
	or $1 - (\frac{1}{5} + \frac{4}{5}x^{1}/5 + (\frac{4}{5})^{2}x^{1}/5 + (\frac{4}{5})^{3}x^{1}/5)$	M1	Allow one term omitted or wrong
			or "correct" extra
	$=\frac{256}{625}$ or 0.410 (3 sfs)	A1 2	Allow 0.41
	5	R1 1	-
	5		
lotal		5	
31	$212 - \frac{24 \times 39}{212}$		$\frac{24.8}{\sqrt{140.560}}$ or $\frac{24.8}{\sqrt{240.64}}$ or $\frac{24.8}{2.85\sqrt{7.54}}$ or $\frac{24.8}{20}$
	$212 - \frac{5}{5}$		$\sqrt{14.8\times56.8}$ $\sqrt{840.64}$ 5.85×7.54 29
	$r = \frac{1}{\sqrt{1 + \frac{1}{2}}}$	B2 2	
	$(130 - \frac{24^2}{3})(361 - \frac{39^2}{3})$		B2 for correct subst in <i>r</i>
	$\sqrt{\frac{150}{5}} \frac{5}{5}$		B1 for correct subst in any S
	P = 0.7 or (B)	B 1	(Λ) and (B) true: B0B0
11	R = 0.7 of (D) Definition of u is DMCC for realize		(A) and (B) inde. DODO
	Definition of r_s is PWICC for ranks	BI Z	
111	r = 0.855	BI	
	$r_{s} = 0.7$	B1 2	or "unchanged": B1B1
			Interchanged: B1
Total		6	
4i	$0.4 \text{ x } p = 0.12 \text{ or } {}^{0.12}/_{0.4} \text{ or } {}^{12}/_{40} \text{ oe}$	M1	
	n = 0.3 oe	A1 2	
	$0.4 \times (1 \text{ their } 0.2) \ \cos \left(\frac{40}{28} \right) \times \frac{28}{28}$	M1	ar 0.4 = 0.12 ar 0.28 ar 28 seen
11	$0.4 \times (1 - \text{then } 0.5) \text{ de eg} /_{100} \wedge /_{40}$	1111	010.4 - 0.12010.280128 Section
			Not 0.4×0.88 unless and to (1) is 0.12
	0.28 or 28% oe	Alft 2	
Total		4	
5ia	Binomial stated or implied	B1	by use of tables or $0.2^a \ge 0.8^b$, $a+b = 12$
	0.9806	B1 2	
b	0 5583 seen	M1	add 10 corr terms or 1-(add 3 corr terms).
0	1 - 0.5583	M1	M2
	1 0.0000	1011	1112
			or 1–0./946 or 0.205 or 1-0.6/74 or 0.323
	= 0.442 (3 sts)	AI 3	or 1-0.390/ or 0.609
			or add 9 terms or 1-(add 2 or 4
			terms): M1
ii	$^{15}C_4 \ge 0.3^4 \ge 0.7^{11}$	M2	$^{15}C_4 \times 0.3^{11} \times 0.7^4$: M1
	= 0.219 (3 sfs)	Δ1 3	
Tatal	0.217 (3 313)		
1 otal		ð	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

6i	Σур	M1	\geq 2 terms added \div 3 or \div 6 etc: M0
	=2.3	A1	
	$\Sigma v^2 p$ (= 5.9)	M1	> 2 terms added \div 3 or \div 6 etc: M0
	$-(\Sigma v n)^2$	M1	$\frac{1}{dep}$ +ve result
	= 0.61 or	A1 5	
	0.01 00		$(-1 3)^2 \times 0$ 2+(-0 3) $^2 \times 0$ 3+0 7 $^2 \times 0$ 5 M2
			one term correct: M1
			Use of Z: MR, lose last A1 (2.55, 0.4475)
ii	0.2x0.25 + 0.3x0.1 or $0.05 + 0.03$ alone	M2	M1 for one product eg correct×2: M1
			or clearly ident $(1,2)$, $(2,1)$: M1
	= 0.08 oe	A1 3	
iii	$0.3 \times 0.1 + 0.3 \times 0.25 + 0.3 \times 0.65$		
	$+0.25 \times 0.2 + 0.25 \times 0.5$ alone		M1 : any 3. 4 of these prods alone
	or $0.03 + 0.075 + 0.195 + 0.05 + 0.125$	M2	or these 5 prods plus 1 extra or repeat
			or (ii) + prod
			or $0.3 + \text{prod}$ or $0.25 + \text{prod}$
			or clearly identify
			(1 2) (3 2) (2 2) (2 1) (2 3)
	$= 0.475$ or $^{19}/_{10}$ or	A1 3	(1,2)(3,2)(2,2)(2,1)(2,3)
	0.175 01 740 00	111 5	M2 for $0.3 \pm (0.2 \pm 0.5) \times 0.25$
			or $0.25 \pm (0.1 \pm 0.65) \times 0.25$
			$r = 0.3 \pm 0.25 + (0.1 \pm 0.05) \times 0.5$
			or $1 (0.2 \pm 0.5)(0.1 \pm 0.65)$
			01 1 - (0.2 + 0.3)(0.1 + 0.03)
			M1 for $(0.2\pm 0.5)(0.1\pm 0.65)$
Total		11	
7io	Pasults or matches are indep	D1	allow "wine" indep: not "trials" indep
/1a	Prob of winning is constant	\mathbf{D}	anow whis indep, not trials indep
ih	No of winning is constant	$DI \ \Delta$ D1 1	
10	No of whis (of losses)	DII	$an(1, n)$ for $n \approx 2n$ allows and threakest
11	210 - 10 - 11 - 210 - 9 - 12	N/1	or $(1-p)$ for $q \approx allow of the bracket$
	$C_{10}p q = C_9p q$		or $352/16p$ $q = 293930pq$
	$\underline{12} p = q$ or $\underline{12} p (1-p)^2 = 1$ or similar	MIMI	M1 for $\frac{1}{10}$ or $\frac{1}{5}$ or 1.2 or $\frac{1}{6}$ or 0.833
	10 10		M1 for <i>p</i> & <i>q</i> cancelled correctly
	1 2n = 1 - n of $eg n = 0.833(1-n)$	M1	or equiveque in p or q (cancelled)
	$r_{2} = 1 p = 0000 (r_{2} p) = 0.000 (r_{1} p)$ or $352716n = 293930(1-n)$.,	nos not nec'y cancelled: not alg denom
	01352710p 255550(1-p)		hos not nee y cuncented, not dig denom
	$p = \frac{5}{11}$ or 0.455 (3 sfs) of	A1 5	
Total		8	
		-	

8i	m = 26.5			B1		
	LQ = 22	or 21.5	or 21.75			
	UQ = 39	40	39.5	M1		M1 for either LQ or UQ
	IQR = 17	18.5	17.75	A1	3	A1 must be consistent LQ, UQ & IQR
ii	Ave or overall	or med or "it" sin	nilar	B1f		or F med (or ave) higher or F mean less
						or M & F both have most in 20s
	Male spread or	eater or M more s	varied oe	R1f	· ·	or male range greater
	Wate spread gr			DII	2	or more younger E or more elder M
		() CC (11)	()	- 		
111	Med less (or no	ot) affected by ext	reme(s) or	BI	I	oe; not anomalies
	Mean (more) a	ffected by extrem	e(s)			ignore eg "less accurate"
iv						must consistently decode last or first
	Decode last					
	245/49			M1		
	= 5			A1		
	mean = 205			B1f	•	200 + "5"
	$\sqrt{(9849/49-(^{24}))}$	$(5/49)^{2}$		M1		dep √+ve
	= 13.3 (3sfs) or	: 4√11		A1		1
	$sd = 13.3$ or 4°	V11		B1f	6	dep M1 or ans 176: award if not +200
	54 1010 01 1			2	U	
	Decode first					
	$\frac{Dccodc mst}{245 + 200 \times 49}$	or 10045	D 1			
	10045	51 10045	DI M1			$a^{11}a^{445}/ar^{0.08}aaan$
	-205					allow 749 01 9.08 Seen
	= 205	0.10045 40.400	Al			
	$\Sigma x^2 = 9849 + 400$	0×10045-49×400	00			
		or 206784	9 B1			
	$"\Sigma x^2"$ " π^2 "		M1			
	$\sqrt{\frac{49}{49}} - x$		IVI I			dep √+ve
						Σx^2 must be: attempt at Σx^2
						>9849
						not involve 9849 ²
						not $(\Sigma x)^2$ eg10045 ² , 445 ²
						\overline{x} must be decoded attempt eg 9.08
	$= 13.3 \text{ or } 4\sqrt{11}$		Δ 1			······································
Total	15.5 01 4 111		211	1	12	
	D			D1	1	In content Not a controlled on index
91	Because grown	n may depend on	pH oe	BI	I	In context. Not x is controlled or indep
	or expt is inves	tigating if y depen	nds on x			
11	$S_{xy} = 17082.5 -$	- 66.5 x 1935/8 (=	997.8125)			
	$S_{xx} = 558.75 - 6$	$66.5^2/8 \qquad (=5)$.96875)			
	$b = S_{xy}/S_{xx}$			M1		Correct sub into any correct <i>b</i> formula
	= 167 (3 sfs)			A1		
	y - 1935/8 = "1	67''(x - 66.5/8)		M1		or <i>a</i> =1935/8 – "167" x 66.5/8
	v = -1150 + 16'	7 <i>x</i>		A1	4	cao NB 3 sfs
iii	v = -1150 + 16'	7 x 7		M1		ft their ean for M1 only
	= 19 to 23	, ,		A1	2	
i.v.	No (or little) re	lationship or corr	elation	R1	<u>-</u> 1	or weak or small corr'n
IV		actoniship of coll	Ciation		1	Not "agreement"
	Dolichlo 1	ah			1	Allow without "intermalation"
va	Kellable as r hi	gn	oe	BI	1	Anow without interpolation oe,
						but must include r high
b	Unreliable as e	xtrapolation	oe	<u>B1</u>	1	or unreliable as gives a neg value
vi	Unreliable (or l	No) because <i>r</i> nea	ur 0	B1	1	or No because Q values vary widely
	or because litt	le (or no or small) corr'n			for $pH = 8.5$
		(0	or rel'n)			
Total	T	X	,	1	1	

Total 72 marks

4733 Probability & Statistics 2

1		$80-\mu$ $\Phi^{-1}(0.05) = 1.(45)$	M1		Standardise once with Φ^{-1} , allow σ^2 , cc
		$\frac{1}{\sigma} = \Phi (0.95) = 1.645$	B1		Both 1.645 (1.64, 1.65) and [0.674, 0.675], ignore signs
		$\mu - 50 = \Phi^{-1}(0.75) = 0.674(5)$	A1		Both equations correct apart from wrong z , not 1–1.645
		$\frac{1}{\sigma} = \Phi^{-1}(0.75) = 0.074(5)$	M1		Solve two standardised equations
		Solve simultaneously	A1		μ, a.r.t 58.7
		$\mu = 58.7$, $\sigma = 12.9$	A1	6	σ , a.r.t. 12.9 [not σ^2] [σ^2 : M1B1A0M1A1A0]
2	(i)	Let <i>R</i> denote the number of choices	M1		$B(12,\frac{5}{6})$ stated or implied, allow 501/600 etc
		which are 500 or less.	M1		p^{12} or q^{12} or equivalent
		$R \sim \mathrm{B}(12, \frac{5}{6})$	Al	3	Answer, a.r.t. 0.112
		$P(R = 12) = (\frac{5}{6})^{12} [=0.11216]$			$[SR: \frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \dots; 0.110: M1A1]$
		= 0.112			[M1 for 0.910 or 0.1321 or vague number of terms]
	(ii)	Method unbiased; unrepresentative by	B1		State that method is unbiased
		chance	B1	2	Appropriate comment (e.g. "not unlikely")
					[SR: partial answer, e.g. not <u>necessarily</u> biased: B1]
3	(i)	$P(\le 1) = 0.0611$	B1		0.0611 seen
		$P(\ge 9) = 1 - P(\le 8) = 1 - 0.9597$	M1		Find $P(\ge 9)$, allow 8 or 10 [0.0866, 0.0171]
		= 0.0403	Al		0.0403 correct
		$0.0611 + 0.0403 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	MI	_	Add probabilities of tails, or 1 tail \times 2
		= 10.1%	Al	5	Answer [10.1, 10.2]% or probability
	(ii)	$P(2 \le G \le 8)$	M1		Attempt at $P(2 \le G \le 8)$, <i>not</i> isw, allow $1 \le G \le 9$ etc
		= 0.8944 - 0.0266 [= 0.8678]	MI	•	$Po(5.5)$ tables, $P(\le top end) - P(\le bottom end)$
		= 0.868	Al	3	Answer, a.r.t. 0.868, allow %
4	(1)	$\hat{\mu} = \overline{y} = \frac{3296.0}{100} = 82.4$	Bl		Mean 82.4, c.a.o.
		40	MI		Use correct formula for biased estimate
		$\frac{286800.4}{40} - 82.4^2 [= 380.25]$	MI		Multiply by $n/(n-1)$
		40	A 1	4	[SK: all in one, M2 or M0]
		$5^{-} \times \frac{10}{39}$; = 390	AI	4	variance 390, c.a.o.
	(ii)	$\Phi\left(\frac{60-82.4}{2}\right) = \Phi(-1.134)$	M1		Standardise, allow 390, cc or biased estimate, +/-,
		(\sqrt{390})	4.1	•	do not allow \sqrt{n}
		= 1 - 0.8716 = 0.128	AI		Answer in range [0.128, 0.129]
	(iii)	No, distribution irrelevant	B1	1	"No" stated or implied, any valid comment
5	(i)	$H_0: \mu = 500$ where μ denotes	B2		Both hypotheses stated correctly
		H_1 : $\mu < 500$ the population mean			[SR: 1 error, B1, but \overline{x} etc: B0]
		$\alpha: \qquad z = \frac{435 - 500}{500} = -1.3$	MI		Standardise, use $\sqrt{4}$, can be +
		$100 / \sqrt{4}$	Al		$z = -1.3$ (allow -1.29 from cc) or $\Phi(z) = 0.0968$ (.0985)
		Compare –1.282	BI		Compare $z \& -1.282 \text{ or } p (< 0.5) \& 0.1 \text{ or equivalent}$
		β: $500 - 1.282 \times 100/\sqrt{4}$	M1		$500 - z \times 100/\sqrt{4}$, allow $\sqrt{100}$ errors, any Φ^{-1} , must be –
		= 435.9; compare 435	A1√;B1	[CV correct, $$ on their z; 1.282 correct and compare
		Reject H ₀	M1√		Correct deduction, needs $\sqrt{4}$, $\mu = 500$, like-with-like
		Significant evidence that number of	A1√	7	Correct conclusion interpreted in context
		visitors has decreased			
	(ii)	CLT doesn't apply as <i>n</i> is small	M1	-	Correct reason [" <i>n</i> is small" is sufficient]
		So need to know distribution	B1	2	Refer to distribution, e.g. "if not normal, can't do it"

6	(i)	(a) $1 - 0.8153$	M1		Po(3) tables, "1 –" used, e.g. 0.3528 or 0.0839
		= 0.1847	A1	2	Answer 0.1847 or 0.185
		(b) 0.8153 – 0.6472	M1		Subtract 2 tabular values, or formula $[e^{-3} 3^4/4!]$
		= 0.168	A1	2	Answer, a.r.t. 0.168
	(ii)	N(150, 150)	B1		Normal, mean 3×50 stated or implied
		(165.5 - 150)	B1		Variance or SD = 3×50 , or same as μ
		$1-\Phi = \frac{100.0 - 100}{\sqrt{1.50}}$	M1		Standardise 165 with λ , $\sqrt{\lambda}$ or λ , any or no cc
		(150)	A1		$\sqrt{\lambda}$ and 165.5
		$= 1 - \Phi(1.266) = 0.103$	A1	5	Answer in range [0.102, 0.103]
	(iii)	(a) The sale of one house does not	B1		Relevant answer that shows evidence of correct
		affect the sale of any others			understanding [but <i>not</i> just examples]
		(b) The average number of houses	B1	2	Different reason, in context
		sold in a given time interval is			[Allow "constant rate" or "uniform" but not "number
		constant			constant", "random", "singly", "events".]
7	(i)	L_{r}^{2}			$\mathbf{L} = \int_{-\infty}^{\infty} \mathbf{L} \mathbf{L} = \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L}$
		$\left \frac{kxdx}{kxdx} \right = \frac{kx}{kx}$	M1		Use $\int_0^\infty kx dx = 1$, or area of triangle
		$ \begin{bmatrix} \mathbf{J}_0 \\ \mathbf{J}_0 \end{bmatrix} $	A1	2	Correctly obtain $k = \frac{1}{2}$ AG
		$= 1 \text{ so } k = \frac{1}{2}$			
	(ii)	<i>У</i> д			
			B1		Straight line, positive gradient, through origin
			B1	2	Correct, some evidence of truncation, no need for vertical
		x			
		0 2			
	(iii)	$\int_{-1}^{2} r^{2} dr = \left[\frac{1}{2}r^{3}\right]^{2} = \frac{4}{2}$	M1		Use $\int_{-\infty}^{\infty} kr^2 dr \cdot \frac{4}{2}$ seen or implied
		$\int_{0}^{2} \int_{0}^{2} \int_{0}^{\infty} dx = [6 x]_{0}^{2} $	A1		
		$\int_{-1}^{2} \frac{1}{x^{3}} dx = \left[\frac{1}{x^{4}}\right]^{2} [=2]$	M1		Use $\int_{-\infty}^{\infty} kr^3 dr$: subtract their mean ²
		$\int_{0}^{2} \int_{0}^{2} \int_{0}^{1} \int_{0$	M1		$\int_0^\infty h^2 dx$, subtract then mean
		$2 - \left(\frac{4}{3}\right)^2 = \frac{2}{9}$	A1	5	Answer $\frac{2}{9}$ or a.r.t. 0.222, c.a.o.
	(iv)	A 12	M1		Translate horizontally allow stated or "1-2" on axis
	(\mathbf{IV})		$\Lambda 1 $	2	One unit to right 1 and 3 indicated nothing wrong seen
				2	no need for vertical or emphasised zero hits
		$ \longrightarrow_{x}$			[If in doubt as to \rightarrow or \downarrow M0 in this part]
	(v)	7	B1√		Previous mean + 1
	~ /	3	B1√	2	Previous variance
		$\frac{2}{9}$		-	[If in doubt as to \rightarrow or \downarrow , B1B1 in this part]

8 (i)	$H_0: p = 0.65 \text{ OR } p \ge 0.65$	B2		Both hypotheses correctly stated, in this form			
	$H_1: p < 0.65$			[One error (but not r, x or \overline{x}): B1]			
	B(12, 0.65)	M1		B(12, 0.65) stated or implied			
	α : P(≤ 6) = 0.2127	A1		Correct probability from tables, <i>not</i> $P(= 6)$			
	Compare 0.10	B1		Explicit comparison with 0.10			
	$β$: Critical region ≤ 5 ; $6 > 5$	B1		Critical region ≤ 5 or ≤ 6 or $\{\leq 4\} \cap \{\geq 11\}$ & compare 6			
	Probability 0.0846	A1		Correct probability			
	Do not reject H ₀	M1√		Correct comparison and conclusion, needs correct			
	Insufficient evidence that proportion			distribution, correct tail, like-with-like			
	of population in favour is not at least	A1√		Interpret in context, e.g. "consistent with claim"			
	65%		7	[SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7]			
(ii)	Insufficient evidence to reject claim;	B1√		Same conclusion as for part (i), don't need context			
	test and p/q symmetric	B1	2	Valid relevant reason, e.g. "same as (i)"			
(iii)	$R \sim B(2n, 0.65), P(R \le n) > 0.15$	M1		B(2 <i>n</i> , 0.65), P($R \le n$) > 0.15 stated or implied			
	B(18, 0.65), p = 0.1391	A1		Any probability in list below seen			
		A1		p = 0.1391 picked out (i.e., not just in a list of > 2)			
	Therefore $n = 9$	Al	4	Final answer $n = 9$ only			
				[SR < <i>n</i> : M1A0, <i>n</i> = 4, 0.1061 A1A0]			
				[SR 2-tail: M1A1A0A1 for 15 or 14]			
				[SR: 9 only, no working: MIA1]			
				[MR B(12, 0.35): M1A0, $n = 4, 0.1061$ A1A0]			
				3 0.3529 7 0.1836 12 0.0942			
				4 0.2936 8 0.1594 13 0.0832			
				5 0.2485 9 0.1391 14 0.0736			
				6 0.2127 10 0.1218 15 0.0652			

4734 Probability & Statistics 3

1(i)	$s^2 = 0.00356/80 \pm 0.00340/100$	M1		Sum of variances
-(.)	$= 7.85 \times 10^{-5}$	Al	2	Or pooled, giving 7.81×10^{-5}
(ii)				
	$(1.36-1.24) \pm zs$	M1		Must be <i>s</i> , accept <i>t</i>
	z=1.96	B1		_
	(0.103, 0.137)	A1	3	
		B1	1 (6)	Or equivalent. Nothing wrong
(iii)	Not necessary since sample sizes are large			
2 (i)	$U_{\alpha\alpha} = \sigma$	M1		
	Use $x \pm z \frac{1}{\sqrt{n}}$			
	= -227.5/20	B1		
	x = 557.5720	B1		
	z = 2.520	A1	4	3 or 4 SF
	(14.9,18.9)			
()	1- 0 98 ³	M1		$\frac{1}{10000000000000000000000000000000000$
(11)	0.0588	A1	2	
	Unbiased estimate of σ^2 required	B1		
(iiii)	t – distribution used to obtain CV			
(111)		B1	2 (8)	
3 (i)	$H_0: p_W = p_N, H_1: p_W > p_N$	B1		For both hypotheses. Or π .
	71+73 (144)			SR: from $p_1q_1/n_1 + p_2q_2/n_2 = 0.00295$
	Pooled $p = \frac{1}{80 + 90}$ $(=\frac{1}{170})$	B1		z = 1.406
	00190 170			B1M1A1M1A1 Max 5/7
	$s^{2} = (144/170)(26/170)(1/80+1/90)$	B1		
	z = (71/80-73/90)/s	M1		
	=1.381	A1		If no explicit comparison and correct
	1.381 < 1.645 Do not reject H ₀ ,			conclusion then M1A0.
	there is insufficient evidence	MI		Or use P-value or CR
	that the proportion of on-time Western trains			In context, not too assertive
	exceeds the proportion of on-time Northern trains	. 1	-	
<i>(</i>)		AI	/	
(11)				
	$s^2 = 71 \times 9/80^3 + 73 \times 17/90^3$	M1		AEF Allow one error
L	= 0.00295	A1	2 (9)	Accept 0.0029
4 (i)	Use $L - S_1 - S_2$	M1		Or equivalent, or implied
	$\mu = 0.7$	B1		
	$\sigma^{2} = 0.58^{2} + 0.31^{2} + 0.31^{2}$	Ml		
	= 0.5286	Al		Nay be implied later
	(1-0. /)/0		6	Correct numerator
	0.340	AI	0	
(ii)	Use $L = 2S$ with $\mu = 0.7$	M*1	 I	M0 if as (i) unless correct
	$\sigma^2 = 0.58^2 + 4(0.31)^2$	R1	L	with it as (i) unless contect
	$-0.7/\sigma$	Den	*M1	Accent +
	- 0.824(5)	A1	1411	Pr -
	0.2048	Al	5	0.205 (3SF)
		(11)	-	

5 (i)	Population of differences is normal	B1	Not "independent"
~ /	$H_0:\mu_A = \mu_B$, $H_1: \mu_A < \mu_B$ where μ_A and	B1	Or $\mu_D = 0, \mu_D > 0$
	μ_B denote the population means		
	$\overline{x}_{D} = 3.222$	B1	From formula ,or B2 from calculator
	$s_{-} = 5.010$	M1A1	
	SD - 5.019		
	t = 3.222/(5.019/3)	M1	Accept 1.93. M1A0 if <i>t</i> = - 1.926
	=1.926	A1	
	CV = 1.860	B1	
	1.926 > 1.860	M1	
	Reject H_0 there is evidence that brand		
	A takes less time than brand B	A1 10	
	Thakes tess time than orang b		
(ii)	One valid reason	B1 1 (11)	Data are clearly paired
			Data not independent
6 (i)	37×58/120	M1	Or equivalent
	17.883 , 17.88 AG	A1 2	
(ii)	H ₀ : Gender and shade are independent	B1	
	(H ₁ :are not independent		
	$3.02^{2}(14.02^{-1}+14.98^{-1}) +$	M1	At least two correct
	$6.12^{2}(17.88^{-1}+19.12^{-1})$	A1	All correct
	$+3.1^{2}(26.1^{-1}+27.9^{-1})$		
	=6.03	A1	
	EITHER: CV 5.991	B1	
	6.03 > 5.991, reject H ₀ and accept that	M1	
	gender and shade are not independent	A1√ 7	Ft X^2 . Can be assertive.
	OR: $P(\gamma^2 > 6.03) = 0.049$	B1	
	< 0.05, reject H ₀ and accept that	M1	
	gender and shade are not independent	A1√	$Ft X^2$
(iii)	G_1 G_2 G_3		
	O 29 37 54	M1	For combining
	E 40 40 40	A1	
	121/40 + 9/40+196/40	M1	
	= 8.15	A1	
	Using $df = 2$	M1	
	2.5% tables, 1.7% calculator	A1 6 (15)	

7(i)	$F(t) = \begin{cases} 0 & t \le 0, \\ t^4 & 0 < t \le 1, \\ 1 & \text{otherwise.} \end{cases}$	B1 B1 2	For t^4 For rest
(ii)	$G(h) = P(H \le h)$ = P(T \ge 1/h^{1/4}) = 1 - F((1/h^{1/4})) = 1 - 1/h g(h) = G'(h) = 1/h^2 h \ge 1, (0 otherwise)	M1 A1 A1 A1 M1 A1 B1 7	Accept < With attempt at differentiation Only from G obtained correctly
(iii)	EITHER: $\int_{1}^{\infty} (h^{-2} + 2h^{-3}) dh$	 M1	For integrating $(1+2h^{-1})g(x)$, with limits from (ii)
	$= \left[-h^{-1} - h^{-2}\right]_{1}^{\infty}$ $= 2$ OR: =1+2 $\int_{1}^{\infty} \frac{1}{t^{3}} dh$	B1 A1	Limits not required
	$= 1 + 2 \left[-\frac{1}{2h^2} \right]_1^{\infty}$ $= 2$	M1 B1 A1	Limits not required
	OR: $E(1+2T^4) = 1 + \int_0^1 8t^7 dt$ = $1 + [t^8]$ = 2	M1 B1 A1 3 (12)	Limits not required

4736 Decision Mathematics 1

1	(i)	5 2 4 3 8 Bin 1: 5 2 3 Bin 2: 4 Bin 3: 8	M1 A1	First bin correct All correct in three bins	[2]
	(ii)	8 5 4 3 2 Bin 1: 8 2 Bin 2: 5 4 Bin 3: 3	M1 A1	First bin correct All correct in three bins	[2]
	(iii)	The heaviest box is originally at the bottom of the stack	B1	Referring to the physical act of sorting the weights into decreasing order	[1]
	(iv)	Bins in any order and boxes in any orderBin 1:8Bin 2:5352Bin 3:424	B1	Any valid packing into three bins of capacity 8 kg.	[1]
		·		Total =	6
2	(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 B1	A connected graph with nine vertices labelled 1 to 9 Correct graph Stating 4	[3]
	(ii)	Neither It has four odd nodes The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi- Eulerian graph has exactly two odd nodes	M1 A1	 'Neither', together with an attempt at a reason A correct reference to the number of odd nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. However, just defining Eulerian and semi-Eulerian, without reference to this graph, is not enough 	[2]
				Total =	5

		AN	ISWERED ON INSERT	
3 (i)	AD = 16 $CD = 18$ $CF = 21$ $AC = 23$ $DF = 35$ C F F	M1 A1	Using Kruskal: Not selecting AC and DF Selecting correct arcs in list, or implied (16+18+21+35+46+50, in this order with no others, can imply M1, A1)	
	BG = 46 $AB = 50$ $EG = 55$ $Total weight = 186$	M1 A1	Drawing a spanning tree for these six vertices Correct (minimum) spanning tree drawn	
	$\frac{FG - 58}{AE - 80} \\ \frac{AF - 100}{AF}$	B1	186 (cao)	[5]
(ii)	Delete <i>BG</i> from spanning tree 186 - 46 = 140 Two shortest arcs from <i>G</i> are <i>BG</i> and <i>EG</i> 140 + 46 + 55 = 241 Lower bound = 241	B1 M1 A1	Correct working for wrong vertex deleted can score B1, M1, A0 Weight of MST on reduced network (ft from part (i) Adding two shortest arcs to MST 241 (cao)	[3]
(iii)	A-D-C-F-G or $16+18+21+58+A-D-C-F-G-B-E-AUpper bound = 274$	M1 A1 B1	Using nearest neighbour Correct closed tour listed, not just weights added 274 (cao)	[3]
			Total =	11

(ii)	The quickest journey time from Jenny's house to the meeting venue	B1	Quickest journey / least travel time or equivalent	[1]
(iii)	Does not allow for waiting for connections There may be delays at the airport She may not want to fly because of the 'carbon footprint' She may want to choose the cheapest route rather than the quickest route She may not like flying She may want to see her friend She may want to break the journey overnight	B1 B1	Any reasonable suggestion for why she may not want to use the drive/fly/underground route or why she may want to use a different route Any second reasonable suggestion	[2]
			Total =	12

(ii) $Cost \le \pounds 150$ $\Rightarrow 8x + 4y + 10z \le 150$ $\Rightarrow 4x + 2y + 5z \le 75$ (given)B1 B1Use of word 'cost' or equivalent $8x + 4y + 10z \le 150$ seen or explicitly referred to[2](iii)(Minimise $P = 15x + 30y + 20z$ B1 ftAny positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$ [1](iv)(Minimise $P = 480 +) - 5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ B1 ftAny positive multiple of this, eg $2y = x(+c)$ or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied B1[3](v) y 14 12 14 M1ANSWERED ON GRAPH PAPER $x = 10$ drawn accurately with a sensible scale[3](v) y 14 12 14 M1Answer accurately with a sensible scale[4]10 12 14 x $x + y = 22$ drawn accurately with a sensible scale[4]	5	(i)	$x = \text{area of wall to be panelled } (m^2)$ y = area to be painted z = area to be covered with pinboard	B1 B1	Reference to area or m^2 (at least once) Identifying x as panelling, y as paint and z as pinboard, in any way	[2]
(iii)(Minimise $P = 15x + 30y + 20z$ B1 ftAny positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$ [1](iv)(Minimise $P = 480 +) - 5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \le 22$ B1 ftAny positive multiple of this, eg $2y - x(+c)$ - or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \le 22$, any equivalent simplified form[3](v)y 14Answere Don GRAPH PAPER $x = 10$ drawn accurately with a sensible scaleM1Answere Don GRAPH PAPER $x = 10$ drawn accurately with a sensible scaleM1Their $x + 3y = 45$ drawn accurately with a 		(ii)	$Cost \le \pounds 150$ $\Rightarrow 8x + 4y + 10z \le 150$ $\Rightarrow 4x + 2y + 5z \le 75 \text{ (given)}$	B1 B1	Use of word 'cost' or equivalent $8x + 4y + 10z \le 150$ seen or explicitly referred to	[2]
(iv) (Minimise $P = 480 + 1 - 5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \le 22$ B1 ft Any positive multiple of this, eg $2y - x(+c)$ or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \le 22$, any equivalent simplified form [3] (v) y 14 12 10 10 12 14 N1 Answered on GRAPH PAPER x = 10 drawn accurately with a sensible scale M1 x + y = 22 drawn accurately with a sensible scale M1 Their $x + 3y = 45$ drawn accurately with a sensible scale M1 Their $x + 3y = 45$ drawn accurately with a sensible scale M1 x N1 x N2 x + y = 22 drawn accurately with a sensible scale M1 x + y = 22 drawn accurately with a x + y = 22 drawn accurately with a x + y = 24 drawn accurately with a x + y = 45 drawn accurately with a x + y = 45 drawn accurately with a x + y = 45 drawn accurately with a x + y = 10 drawn accurately with a x + y = 20 drawn accurately drawn accurately with a		(iii)	(Minimise $P =$) $15x + 30y + 20z$	B1 ft	Any positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$	[1]
(v) y 14 12 12 10 10 10 12 14 (v) y 14 (v) y 10 (v) y 14 (v) y 14 (v) y 10 (v) y 14 (v) y 10 (v) y 14 (v) y 14 (v) y 10 (v) y 14 (v) y 14 (v) y 14 (v) y 14 (v) y 14 (v) y 10 (v) y 14 (v) y 14 (v) y 14 (v) y 10 (v) y 14 (v) y 14 (v) y 14 (v) y 14 (v) y 14 (v) y 14 (v) y 10 (v) y 10 (v) y 10 (v) y 10 (v) y 10 (v) y 10 (v) y 10 (v) y 10 (v) y 10 (v) y (v) y		(iv)	(Minimise $P = 480 + - 5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \le 22$	B1 ft B1 B1	Any positive multiple of this, eg $2y-x(+c)$ - or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \le 22$, any equivalent simplified form	[3]
		(v)	y 14 12 10 10 12 14 10 12 14	M1 M1 A1 x	ANSWERED ON GRAPH PAPER x = 10 drawn accurately with a sensible scale x + y = 22 drawn accurately with a sensible scale Their $x + 3y = 45$ drawn accurately with a sensible scale Shading correct or identification of the feasible region (triangle with $(10, 11\frac{2}{3}), (10, 12)$ and $(10\frac{1}{2}, 11\frac{1}{2})$ as vertices)	[4]

6	(i)	$\begin{array}{c} P \\ 1 \\ 0 \\ 0 \end{array}$	x -25 6 5	<i>y</i> -14 -4 -3		<i>s</i> 0 1 0	t 0 0 1	0 24 15	B1 B1	Rows and columns may be in any order Objective row with -25, -14, 32 Constraint rows correct (condone omission of <i>P</i> column)	[2]
	(ii)	x column Canno entries 24 ÷ 6	mn has t use y s in all = 4	a nega colum the oth	ative va n since er row	alue in e it has 's	object negati	ive row ve	B1 B1	'negative in top row', '-25', or similar 'most negative in top row' \Rightarrow bod B1 Correct reason for not choosing y column Both divisions seen and correct choice	
		15 ÷ 5 Least 1	= 3 non-ne	gative	ratio is	s 3, so j	pivot o	n 5	B1	made (or both divisions seen and correct choice implied from pivoting)	[3]
	(iii)	1 0 0 New re New re New re $x = 3, p = 75$	$\frac{0}{0}$ $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}$	$\frac{-29}{-0.4} - 0.6$ = $\frac{1}{5}$ row 1 = row 2 z = 0	82 -9 2 + 25× - 6×ne	0 1 0	5 -1.2 0.2 w 3 c 3 c	75 6 3 e	M1 A1 B1 B1 B1 B1 ft B1 ft	Follow through their sensible tableau (with two slack variable columns) and pivot Pivot row correct (no numerical errors) Other rows correct (no numerical errors) Calculation for pivot row Calculation for objective row Calculation for objective row Calculation for other row x, y and z from their tableau P from their tableau, provided $P \ge 0$	[2] [3] [2]
	(iv)	Proble No lim Only r all ent	em is un nit to h negativ ries in	nbounc ow big e in ob this co	led y (and jective lumn a	l hence e row is are neg	<i>P</i>) car s y colu ative	ı be ımn, bu	t B1	Any one of these, or equivalent. If described in terms of pivot choices, must be complete and convincing	[1]
										Total =	13

		$F = N \div H$ G = INT($H = B \times G$ N = G	8 (F) G H					For reference only	
7	(i)	F	G	Н	С	Ν	M1	A reasonable attempt at first pass (presented in any form)	
		2.5	2	4	1	2	A1	F = 2.5 and $G = 2$	
		1	1	2	0	1	AI	H = 4 (or double their G value) and $C = 5$ – their H	
		0.5	0	0	1	0	A1	F, G, H, C and N correct for second pass	
		0.5	0	0	I	0	A1	(If their N value) F, G, H, C and N correct for third pass	
								(ft their N value)	[5]
	(ii)	F	G	Н	С	N	M1	A reasonable attempt	
		-2.5 -1.5	-3 -2	-6 -4	1	-3 -2	M1 d	First pass correct (or implied)	
		-1	-1	-2	0	-1			
		-0.5 -0.5	-1 -1	-2 -2	1 1	-1 -1	A1	Reaching two lines with the same value for <i>G</i>	
								If described in words only, then M1 for a correct statement; M1 d for all correct statements (sufficient to guarantee result), and A1 for convincingly correct explanation of how they know these to be true and why the result follows	
		Does not	termina	te			B1	Saying 'does not stop', or equivalent	[4]
	(iii)	F 27	G 2	H 20	<i>C</i>	N 2	M1	First pass correct	
		0.3	0	0	3	0	A1	All correct	
		The first second va the hundr	value is alue is th reds digi	the units the tens dig t, and so d	digit of <i>N</i> git, the th on.	V, the ird value is	M1 A1	Outputs are digits of <i>N</i> In reverse order	[4]
		1						Total =	13

4737 Decision Mathematics 2

(iv) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	For reference only	
2 5 3 4 2 1 1 0 2 4 3 0 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 1 5 3 3 2 1 0 0 2 3 3 0 3 5 3 3 5 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 Or reduce columns 1 4 3 0 4 1 3 2 1 3 0 5 2 0 2 3 4 5 3 3 0 2 1 5 3 5 3 2 1 0 3 5 3 0 2 1 M1 Then reduce rows 1 4 3 0 4 1 3 2 1 3 0 4 1 3 2 1 3 0 5 3 3 0 2 1 5 3 3 0 2 1 5 3 5 3 2 1 0 3 5 3 0 2 1 3 5 3 0 2 1 3	
		A1 cao with rows reduced first Follow through their reasonable reduced cost matrix if possible	[3]
Cross out 0's usin Augment by 1 to g	g 5 lines get a complete allocation	M1 M1 A1 Any valid choice of lines (max for theirs) Augmenting appropriately Augmentation completely correct (ft)	[3]
A = 1 B = 5 C Arnie	= 2 D = 3 E = 6 F = 4	B1 This allocation <u>listed</u> in any form, cao B1 Arnie named (not just A), cao Total =	[2]

2	(i)	6	B1	6	[1]
	(ii)	The total number of points for each combination is 10, subtracting 5 from each entry gives a total of 0 for each entry.		Total = 10 changes to total = 0 or subtracting 5 gives total = 0 for every cell	[1]
	(iii)	LiamMikeNicolarow minPhilip-101-1Sanjiv-2-3-1-3Tina10-2-2col max101Play-safe for R is Philip Play-safe for C is MikePlay-safe for C is Mike		Row for Sanjiv is optional Writing out pay-off matrix for zero-sum game (or explaining that the given matrix will give the same play safes since each entry is a constant 5 more than in the zero-sum game	
				P, cao, row minima need not be seen M, cao, col maxima need not be seen Accept any reasonable identification	
		Not stable since $-1 \neq 0$	B1	Any equivalent reasoning Their row maximin ≠ their col minimax	
		If Team R play safe then Team C should choose Liam	B1	'Liam' or 'L', or follow through their choice of play safe for Team R	[5]
	(iv)	If the entry for row P column L is increased the col max for Liam is at least as big as at present so column M is still the column minimax and the row min for Philip is at least as big as at present so row P is still the row maximin.	M1 A1	Using either original values or augmented values. A reasonable explanation of either part A correct explanation of both (in play safe row and not in play safe column, without further explanation \Rightarrow M1, A0)	[2]
	(v)	Sanjiv's scores are dominated by Philip's. Sanjiv scores fewer hits than Philip <u>for each</u> <u>choice</u> of captains from Team C	B1	Identifying dominance by <i>P</i> and explaining it or showing the three comparisons	[1]
	(vi)	4p + 6(1-p) or -1p + 1(1-p) + 5 = 6-2p M: 5n + 5(1-n) or 0(n) + 0(1-n) + 5 = 5	M1 A1	Using original or reduced values correctly Achieving given expression from valid working	
		N: $6p + 3(1-p)$ or $1p + -2(1-p) + 5 = 3p+3$	B1	5 and 3 <i>p</i> +3, cao	[3]

				ANSWERED ON INSERI	
4	(i)	A single source that joins to S_1 and S_2 Directed arcs with weights of at least 90 and 110, respectively T_1 and T_2 joined to a single sink Directed arcs with weights of at least 100 and 200, respectively	B1	Condone no directions shown	[2]
			DI	Condone no directions shown	["]
	(ii)	If AE and BE were both full to capacity there would be 50 gallons per hour flowing into E , but the most that can flow out of E is 40 gallons per hour.	M1 A1	Considering what happens at E (50 into E) At most 40 out	[2]
	(iii)	40 + 60 + 60 + 140 = 300 gallons per hour	B1	300	[1]
	(iv)	30 + 20 + 30 + 20 + 40 + 40 + 20 + 40 = 240 gallons per hour	M1 A1	Evidence of using correct cut 240	[2]
	(v)	A feasible flow through network Flow = 200 gallons per hour Cut through arcs S_1A , S_1B , S_1C , S_2B , S_2C and S_2D or cut $X = \{ S_1, S_2 \}$, $Y = \{A, B, C, D, E, F, G, T_1, T_2 \}$	M1 A1 B1	Cut indicated in any way (May be on diagram for part (i))	[3]
	(vi)	Flows into <i>C</i> go to C_{IN} , arc of capacity 20 from C_{IN} to C_{OUT} , and flows out of <i>C</i> go from C_{OUT} . Cut $X = \{S_1, S_2, C_{IN}\}$ or $X = \{S_1, S_2, C_{IN}, D\}$ shows max flow = 140 gallons per hour	B1 B1 B1 B1	May have working or cut shown on diagram Into $C (S_1 = 40, S_2 = 40, D = 20)$ Through C Out of $C (F = 60, G = 60)$ 140 (cut not necessary)	[4]
	·	·	·	Total =	14

- ANSWERED ON INSERT	

5	(i)	Activity	Duration	Immediate			
			(days)	predecessors			
		A	8	-			
		В	6	-			
		С	4	-			
		D	4	A	D1		
		E	2	A B	BI	Precedences correct for A, B, C, D	
		F	3	A B			
		G	4	D	D1	Precedences correct for $E = C$	
		H	5	DEF	DI	recedences correct for <i>E</i> , <i>F</i> , O	
		I	3	F	B1	Precedences correct for <i>H_I_I</i>	[3]
_		J	5	C F	DI		[9]
	(ii)		8 8	12 12			
		0.0	89	12 12 17 17	M1	Forward pass, no more than one independent	
					A1	error Forward pass correct (cao)	
				11 12	M1 A1	Backward pass, no more than one independent error Backward pass correct (cao)	[4]
		Minimum pr Critical activ	roject duration vities = $A D A$	on = 17 days H	B1 B1	17, cao <i>A D H</i> , cao	[2]
	(iii)					ANSWERED <u>ON GRAPH</u> PAPER	
					M1	A plausible histogram, with no holes or overhanging blocks	
					A1	Correct shape	
							[2]
-	(iv)	Example: Start <i>A</i> and <i>D</i> Start <i>D</i> and <i>D</i> Then, for ex day 13, and	B as before b F as before b ample, start I and J on da	ut delay C to day 6 but delay E to day 11 G on day 12, H on by 16	B1 B1 M1 A1	Precedences not violated, durations correct Dealing with A, B and C Dealing with D, E and F Dealing with G, H I and J A valid solution using 6 workers for 21 days	[4]
		5 - 5		2			
		•				Total =	15

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2008 Examination Series

Unit Threshold Marks

7892		Maximum Mark	Α	В	С	D	E	U
4724	Raw	72	58	50	42	35	28	0
4721	UMS	100	80	70	60	50	40	0
4722	Raw	72	60	52	45	38	31	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	51	44	37	31	25	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	57	49	42	35	28	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	56	49	42	36	30	0
4723	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
4720	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	59	52	45	38	31	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	57	49	41	33	25	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	50	43	36	29	22	0
4700	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	41	34	27	0
4102	UMS	100	80	70	60	50	40	0
4733	Raw	72	55	48	41	34	28	0
4700	UMS	100	80	70	60	50	40	0
4734	Raw	72	52	45	38	31	25	0
4754	UMS	100	80	70	60	50	40	0
4736	Raw	72	57	51	45	40	35	0
7100	UMS	100	80	70	60	50	40	0
4737	Raw	72	59	52	45	39	33	0
4/3/	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	Е	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	25.5	49.6	70.9	84.3	96.0	100	478
3892	28.6	71.4	100	100	100	100	7
7890	33.0	58.3	79.1	92.2	97.4	100	115
7892	11.1	44.4	100	100	100	100	9

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

