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1 In a study of urban foxes it is found that on average there are 2 foxes in every 3 acres.

(i) Use a Poisson distribution to find the probability that, at a given moment,

(a) in a randomly chosen area of 3 acres there are at least 4 foxes, [2]

(b) in a randomly chosen area of 1 acre there are exactly 2 foxes. [3]

(ii) Explain briefly why a Poisson distribution might not be a suitable model. [2]

2 The random variable W has the distribution B(40, 2
7
). Use an appropriate approximation to find

P(W > 13). [7]

3 The manufacturers of a brand of chocolates claim that, on average, 30% of their chocolates have hard
centres. In a random sample of 8 chocolates from this manufacturer, 5 had hard centres. Test, at the
5% significance level, whether there is evidence that the population proportion of chocolates with hard
centres is not 30%, stating your hypotheses clearly. Show the values of any relevant probabilities.

[7]

4 DVD players are tested after manufacture. The probability that a randomly chosen DVD player is
defective is 0.02. The number of defective players in a random sample of size 80 is denoted by R.

(i) Use an appropriate approximation to find P(R ≥ 2). [4]

(ii) Find the smallest value of r for which P(R ≥ r) < 0.01. [3]

5 In an investment model the increase, Y%, in the value of an investment in one year is modelled as a
continuous random variable with the distribution N(µ, 1

4
µ2). The value of µ depends on the type of

investment chosen.

(i) Find P(Y < 0), showing that it is independent of the value of µ . [4]

(ii) Given that µ = 6, find the probability that Y < 9 in each of three randomly chosen years. [4]

(iii) Explain why the calculation in part (ii) might not be valid if applied to three consecutive years.
[1]

6 Alex obtained the actual waist measurements, w inches, of a random sample of 50 pairs of jeans, each
of which was labelled as having a 32-inch waist. The results are summarised by

n = 50, Σw = 1615.0, Σw2 = 52 214.50.

Test, at the 0.1% significance level, whether this sample provides evidence that the mean waist
measurement of jeans labelled as having 32-inch waists is in fact greater than 32 inches. State your
hypotheses clearly. [10]
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7 The random variable X has the distribution N(µ , 82). The mean of a random sample of 12 observations
of X is denoted by X. A test is carried out at the 1% significance level of the null hypothesis H0: µ = 80

against the alternative hypothesis H1: µ < 80. The test is summarised as follows: ‘Reject H0 if X < c;
otherwise do not reject H0’.

(i) Calculate the value of c. [4]

(ii) Assuming that µ = 80, state whether the conclusion of the test is correct, results in a Type I error,
or results in a Type II error if:

(a) X = 74.0, [1]

(b) X = 75.0. [1]

(iii) Independent repetitions of the above test, using the value of c found in part (i), suggest that in
fact the probability of rejecting the null hypothesis is 0.06. Use this information to calculate the
value of µ . [4]

8 A continuous random variable X has probability density function given by

f(x) = { kxn 0 ≤ x ≤ 1,

0 otherwise,

where n and k are positive constants.

(i) Find k in terms of n. [3]

(ii) Show that E(X) = n + 1
n + 2

. [3]

It is given that n = 3.

(iii) Find the variance of X. [3]

(iv) One hundred observations of X are taken, and the mean of the observations is denoted by X.
Write down the approximate distribution of X, giving the values of any parameters. [3]

(v) Write down the mean and the variance of the random variable Y with probability density function
given by

g(y) = { 4(y + 4
5
)3 −4

5
≤ y ≤ 1

5
,

0 otherwise.
[3]
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