

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Core Mathematics 2

Monday

16 JANUARY 2006

Morning

1 hour 30 minutes

4722

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

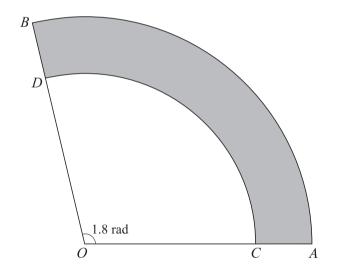
- The number of marks is given in brackets [] at the end of each question or part question. .
- The total number of marks for this paper is 72. .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

~

- 1 The 20th term of an arithmetic progression is 10 and the 50th term is 70.
 - (i) Find the first term and the common difference. [4]
 - (ii) Show that the sum of the first 29 terms is zero. [2]
- 2 Triangle ABC has AB = 10 cm, BC = 7 cm and angle $B = 80^{\circ}$. Calculate
 - (i) the area of the triangle, [2]
 - (ii) the length of CA, [2]
 - (iii) the size of angle C.
- 3 (i) Find the first three terms of the expansion, in ascending powers of x, of $(1 2x)^{12}$. [3]
 - (ii) Hence find the coefficient of x^2 in the expansion of

$$(1+3x)(1-2x)^{12}$$
. [3]

4



The diagram shows a sector *OAB* of a circle with centre *O*. The angle *AOB* is 1.8 radians. The points *C* and *D* lie on *OA* and *OB* respectively. It is given that OA = OB = 20 cm and OC = OD = 15 cm. The shaded region is bounded by the arcs *AB* and *CD* and by the lines *CA* and *DB*.

(i) Find the perimeter of the shaded region.	[3]
--	-----

(ii) Find the area of the shaded region.

[3]

[2]

- 5 In a geometric progression, the first term is 5 and the second term is 4.8.
 - (i) Show that the sum to infinity is 125. [2]
 - (ii) The sum of the first *n* terms is greater than 124. Show that

$$0.96^n < 0.008$$
,

and use logarithms to calculate the smallest possible value of *n*. [6]

6 (a) Find
$$\int (x^{\frac{1}{2}} + 4) dx$$
. [4]

(b) (i) Find the value, in terms of *a*, of
$$\int_{1}^{a} 4x^{-2} dx$$
, where *a* is a constant greater than 1. [3]

(ii) Deduce the value of
$$\int_{1}^{\infty} 4x^{-2} dx$$
. [1]

- 7 (i) Express each of the following in terms of $\log_{10} x$ and $\log_{10} y$.
 - (a) $\log_{10}\left(\frac{x}{y}\right)$ [1]

(b)
$$\log_{10}(10x^2y)$$
 [3]

(ii) Given that

$$2\log_{10}\left(\frac{x}{y}\right) = 1 + \log_{10}(10x^2y),$$

find the value of y correct to 3 decimal places.

- 8 The cubic polynomial $2x^3 + kx^2 x + 6$ is denoted by f(x). It is given that (x + 1) is a factor of f(x).
 - (i) Show that k = -5, and factorise f(x) completely. [6]

(ii) Find
$$\int_{-1}^{2} f(x) dx$$
. [4]

(iii) Explain with the aid of a sketch why the answer to part (ii) does not give the area of the region between the curve y = f(x) and the *x*-axis for $-1 \le x \le 2$. [2]

[Question 9 is printed overleaf.]

[4]

- 4
- (i) Sketch, on a single diagram showing values of x from -180° to $+180^{\circ}$, the graphs of $y = \tan x$ and $y = 4 \cos x$. [3]

The equation

9

$$\tan x = 4\cos x$$

has two roots in the interval $-180^\circ \le x \le 180^\circ$. These are denoted by α and β , where $\alpha < \beta$.

- (ii) Show α and β on your sketch, and express β in terms of α . [3]
- (iii) Show that the equation $\tan x = 4 \cos x$ may be written as

$$4\sin^2 x + \sin x - 4 = 0.$$

Hence find the value of $\beta - \alpha$, correct to the nearest degree.

[6]