- 1. Find the exact value of $\int_0^1 \frac{1}{\sqrt{x^2 + 8x}} dx$. (6 marks) - 2. Find the general solution of the differential equation $$\cosh x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sinh x = 1. \tag{7 marks}$$ 3. Given that $I_n = \int_0^1 x^n e^{2x} dx$, where $n \ge 0$, (a) show that, for $$n \ge 1$$, $2I_n = e^2 - nI_{n-1}$. (5 marks) (b) Find the exact value of $$I_0$$. (2 marks) (c) Hence express $$I_2$$ in its simplest form in terms of e. (3 marks) 4. (a) Given that $y = \operatorname{arcosh} 2x$, prove that $\frac{dy}{dx} = \frac{2}{\sqrt{4x^2 - 1}}$. (4 marks) (b) Find $$\int \operatorname{arcosh} 2x \, dx$$. (7 marks) 5. (a) Using the substitution $u = e^x$, or otherwise, find $\int \operatorname{sech} x \, dx$. (7 marks) The region R is bounded by the curve with equation $y = \operatorname{sech} x$, the x-axis and the lines x = 1 and $x = \ln 5$. (b) Draw a sketch to show the region $$R$$. (2 marks) 6. The parametric equations of a curve are $$x = a(1 - \cos 2t), y = a(2t + \sin 2t),$$ where a is a non-zero real constant and $0 \le t \le \frac{\pi}{2}$. (b) Find the radius of curvature of the curve at the point where $$t = \frac{\pi}{4}$$. (5 marks) 7. The point $P(a \cosh p, b \sinh p)$, where $a \neq 0$ and $b \neq 0$, lies on a hyperbola. The tangent at P meets the asymptotes of the hyperbola at A and B.