1. Given that $y = \arctan x$, prove that $\frac{dy}{dx} = \frac{1}{1+x^2}$ (3 marks)

- 2. Given that $y = \sinh x$,
 - (a) find, in terms of natural logarithms, the value of x for which 7y = 24. (3 marks)
 - (b) For this value of x, find the exact value of x. (3 marks)
- 3. Given that $I_n = \int_0^{\pi} \sin^n x \, dx$,
 - (a) show that, for $n \ge 1$, $I_n = \frac{n-1}{n} I_{n-2}$. (6 marks)
 - (b) Hence find the exact value of I_5 . (4 marks)
- 4. A curve C has parametric equations $x = 3t^2$, y = 6t.
 - (a) Give the name for the type of curve of which C is an example. (1 mark)
 - (b) Find the radius of curvature of C at the point (3, -6). (4 marks)
 - (c) Find the value of p for which the tangent to C at $(3p^2, 6p)$ passes through the point (0, 1).
- 5. (a) Find

(i)
$$\int \frac{1}{\sqrt{x^2 + 8x + 20}} dx$$
, (ii) $\int \frac{1}{x^2 + 8x + 20} dx$. (6 marks)

(b) Show that
$$\int_{-6}^{-2} \frac{4}{x^2 + 8x + 20} dx = \pi$$
. (3 marks)

6. (a) Show that the length of the arc of the curve $y = \frac{2}{3}x^{3/2}$ between the points where x = 0 and x = 3 is equal to

$$\int_0^3 \sqrt{1+x} \, \mathrm{d}x. \tag{4 marks}$$

(b) Using the substitution $1 + x = u^2$, or otherwise, evaluate this length. (5 marks)

PURE MATHEMATICS 5 (A) TEST PAPER 2 Page 2

- 7. (a) Sketch the curve with equation $y = \cosh x$. (2 marks)
 - (b) Show that the normal to this curve at the point P where $x = \ln 2$ cuts the x-axis at the point $(\ln 2 + \frac{15}{16}, 0)$. (7 marks)

The finite region bounded by the curve $y = \cosh x$, the x and y axes and the normal at P is rotated through 360° about the x-axis.

(c) Find the volume of the solid formed.

(5 marks)

8. (a) Show that an equation of the tangent at the point $(\frac{5}{3}\cos\theta, \frac{5}{4}\sin\theta)$ to the ellipse $9x^2 + 16y^2 = 25$ is $3x\cos\theta + 4y\sin\theta = 5$. (6 marks)

Given that this tangent meets the x-axis at P and the y-axis at Q, and that O is the origin,

(b) show that the area of triangle OPQ is $|k cosec 2\theta|$, where k is a constant to be found.

(4 marks)

(c) Show also that as θ varies, the locus of the mid-point of PQ is the curve with equation

$$9x^2 + 16y^2 = \frac{576}{25}x^2y^2.$$
 (5 marks)