- 1. Find the coordinates of any point(s) of intersection of the curves with equations $y = \cosh 2x$ and $y = 3 2 \cosh x$. (5 marks)
- 2. (a) Prove that $\frac{d}{dx}(\arccos x) = \frac{-1}{\sqrt{1-x^2}}$. (3 marks)
 - (b) Find the gradient of the curve $y = \arccos(\ln 2x)$ at the point where $x = \frac{1}{2}$. (3 marks)
- 3. The parametric equations of a curve C are

$$x = 3t^2$$
, $y = 2t^3$, where $t \ge 0$.

Prove that, with the usual notation, C has intrinsic equation $s = 2(\sec^3 \psi - 1)$. (7 marks)

4. (a) Find the positive value of k for which $y = a \cosh kx + b \sinh kx$ is a solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 9y = 0. ag{3 marks}$$

- (b) Hence find a solution of this equation for which y = 2 and $\frac{dy}{dx} = 1$ when x = 0. (4 marks)
- (c) Show that the graph of this solution does not cross the x-axis. (3 marks)
- 5. (a) Sketch the curve with equation $y = \arcsin x$ for $-1 \le x \le 1$. (2 marks)
 - (b) Find the area of the region bounded by the curve $y = \arcsin x$, the x-axis and the line $x = \frac{1}{2}$. (9 marks)
- 6. (a) Find $\frac{d}{dx} (\ln x)^n$, where $n \ge 0$. (2 marks)

Given that
$$I_n = \int_{-1}^{e} x (\ln x)^n dx$$
,

(b) show that
$$2I_n = e^2 - nI_{n-1}$$
. (5 marks)

(c) Hence find the exact value of
$$I_2$$
. (5 marks)

PURE MATHEMATICS 5 (A) TEST PAPER 8 Page 2

7. The parametric equations of a curve are

$$x = 3a \sec^2 t$$
, $y = 2a \tan^3 t$,

where a > 0 and $0 \le t \le \frac{\pi}{4}$.

(a) Find the area of the surface formed when the curve is rotated once about the x-axis.

(7 marks)

(b) Find the radius of curvature at the point where $t = \frac{\pi}{4}$.

(5 marks)

- 8. The point P lies on the rectangular hyperbola with equation $xy = c^2$, where $c \neq 0$. The x-coordinate of P is cp.
 - (a) Show that the normal to the hyperbola at P has equation $py c = p^3(x cp)$. (5 marks)
 - (b) Find the values of p for which this normal passes through the origin. (2 marks)

This normal meets the y-axis at the point Q.

(c) Find an equation of the locus of the mid-point of PQ, as P moves on the hyperbola.

(5 marks)