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1. A curve C is described by the equation 

3x2 – 2y2 + 2x – 3y + 5 = 0.

Find an equation of the normal to C at the point (0, 1), giving your answer in the form 
ax + by + c = 0, where a, b and c are integers.
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, where A and B are constants,

(a) find the values of A and B.
(3)

(b) Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and 
including the term in x3, simplifying each term.

(6)
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3.          Figure 3

The curve with equation y = 3 sin 
2

x
, 0  x  2, is shown in Figure 1. The finite region enclosed 

by the curve and the x-axis is shaded.

(a) Find, by integration, the area of the shaded region.
(3)

This region is rotated through 2 radians about the x-axis.

(b) Find the volume of the solid generated.
(6)

O 2 x

y
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4.     Figure 2

The curve shown in Figure 2 has parametric equations

x = sin t,   y = sin 





 

6


t ,        

2


 < t < 

2


.

(a) Find an equation of the tangent to the curve at the point where t = 
6


.

(6)

(b) Show that a cartesian equation of the curve is 

y = 
2

3
x + 

2

1
(1 – x2),      –1 < x < 1.

(3)
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5. The point A, with coordinates (0, a, b) lies on the line l1, which has equation

r = 6i + 19j – k + (i + 4j – 2k).

(a) Find the values of a and b.
(3)

The point P lies on l1 and is such that OP is perpendicular to l1, where O is the origin.

(b) Find the position vector of point P.
(6)

Given that B has coordinates (5, 15, 1),

(c) show that the points A, P and B are collinear and find the ratio AP : PB.
(4)
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6.       Figure 3

Figure 3 shows a sketch of the curve with equation y = (x – 1) ln x,  x > 0.

(a) Copy and complete the table with the values of y corresponding to x = 1.5 and x = 2.5.

x 1 1.5 2 2.5 3

y 0 ln 2 2 ln 3

(1)

Given that I = 
 

3

1

dln)1( xxx ,

(b) use the trapezium rule

(i) with values at y at x = 1, 2 and 3 to find an approximate value for I to 4 significant 
figures,

(ii) with values at y at x = 1, 1.5, 2, 2.5 and 3 to find another approximate value for I to 
4 significant figures.

(5)

(c) Explain, with reference to Figure 3, why an increase in the number of values improves the 
accuracy of the approximation.

(1)

(d) Show, by integration, that the exact value of 
 

3

1

dln)1( xxx is 2
3 ln 3.

(6)

O 1 x

y
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7.

At time t seconds the length of the side of a cube is x cm, the surface area of the cube is S cm2, 
and the volume of the cube is V cm3.

The surface area of the cube is increasing at a constant rate of 8 cm2 s–1.

Show that

(a)
t

x

d

d
= 

x

k
, where k is a constant to be found,

(4)

(b)
t

V

d

d
= 3

1

2V .

(4)

Given that V = 8 when t = 0,

(c) solve the differential equation in part (b), and find the value of t when V = 162.
(7)

TOTAL FOR PAPER: 75 MARKS
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