June 2006 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
1.	$\frac{6x^3}{3} + 2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$	M1
	-	A1
	$=2x^3+2x+2x^{\frac{1}{2}}$	A1
	+c	B1
	M1 for some attempt to integrate $x^n = x^{n+1}$	Total 4 marks
	1 st A1 for either $\frac{6}{3}x^3$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better	
	2^{nd} A1 for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$.	
	B1 for $+ c$, when first seen with a changed expression.	
2.	Critical Values	
	$(x \ a)(x \ b)$ with $ab=18$ or $x = \frac{7 \ \sqrt{49 - 72}}{2}$ or	M1
	$\left(x-\frac{7}{2}\right)^2 \left(\frac{7}{2}\right)^2 - 18$	
	$(x-9)(x+2)$ or $x = \frac{7}{2} = \frac{11}{2}$ or $x = \frac{7}{2} = \frac{11}{2}$	A1
	Solving Inequality $x > 9$ or $x < -2$ Choosing "outside"	M1
		A1
		Total 4 marks

1st M1 For attempting to find critical values.

Factors alone are OK for M1, x = appearing somewhere for the formula and as written for completing the square

 1^{st} A1 Factors alone are OK . Formula or completing the square need x = as written.

2nd M1 For choosing outside region. Can f.t. their critical values. They must have two different critical values.

-2 > x > 9 is M1A0 but ignore if it follows a correct version

-2 < x < 9 is M0A0 whatever the diagram looks like.

 2^{nd} A1 Use of \geq in final answer gets A0

Question number		Scheme		Marks	
3.	(a)	U shape touching x-axis	B1		
	▲	(-3,0)	B1		
	9	(0, 9)	B1	(3)	
	-3 (b)	Translated parallel to y-axis up	M1		
		(0, 9 + k)	B1f.t.	(2)	
	v = 0 $9 + k$		Tot	al 5 marks	
(a)	2 nd B1 They can score this eve	If χ other intersections with the x -axis are	100		
	given.	can appear on the sketch as shown			
(b)	M1 Follow their curve in (a) u	up only. If it is not obvious do not give it. but doesn't in (b) then it is M0.			
	B1f t Follow through their 9				

Question number		Scheme	Marks	
4.	(a)	$a_2 = 4$	B1	
		$a_3 = 3 \times a_2 - 5 = 7$	B1f.t. (2)	
	(b)	$a_4 = 3a_3 - 5(=16)$ and $a_5 = 3a_4 - 5(=43)$	M1	
		3 + 4 + 7 + 16 + 43	M1	
		= 73	A1c.a.o. (3)	

Total 5 marks

 $2^{\rm nd}$ B1f.t. Follow through their a_2 but it must be a value. $3 \times 4 - 5$ is B0. Give wherever it is first seen.

1st M1 For two further attempts to use of $a_{n+1} = 3a_n - 5$, wherever seen. Condone arithmetic slips $2^{\rm nd}$ M1 For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$ Use of formulae for arithmetic series is M0A0 but could get $1^{\rm st}$

M1 if a_4 and a_5 are correctly attempted.

Question number	Scheme	Marks
	$(y = x^4 + 6x^{\frac{1}{2}} y =) 4x^3 + 3x^{-\frac{1}{2}} \text{or} 4x^3 + \frac{3}{\sqrt{x}}$ $(x+4)^2 = x^2 + 8x + 16$	M1A1A1 (3) M1
	$\frac{(x+4)^2}{x} = x + 8 + 16x^{-1}$ (allow 4+4 for 8)	A1
	$(y = \frac{(x+4)^2}{x}$ $y = 1 - 16x^{-2}$ o.e.	M1A1 (4)

Total 7 marks

(a) M1 For some attempt to differentiate $x^n = x^{n-1}$

1st A1 For one correct term as printed.

2nd A1 For both terms correct as printed.

$$4x^3 + 3x^{-\frac{1}{2}} + c$$
 scores M1A1A0

(b) 1^{st} M1 For attempt to expand $(x+4)^2$, must have x^2 , x, x^0 terms and at least 2 correct

e.g.
$$x^2 + 8x + 8$$
 or $x^2 + 2x + 16$

1st A1 Correct expression for $\frac{(x+4)^2}{x}$. As printed but allow $\frac{16}{x}$ and $8x^0$.

 2^{nd} M1 For some correct differentiation, any term. Can follow through their

simplification. N.B. $\frac{x^2 + 8x + 16}{x}$ giving rise to (2x + 8)/1 is M0A0

ALT <u>Product or Quotient rule</u> (If in doubt send to review)

M2 For correct use of product or quotient rule. Apply usual rules on formulae.

1st A1 For
$$\frac{2(x+4)}{x}$$
 or $\frac{2x(x+4)}{x^2}$

$$2^{\text{nd}} \text{ A1} \quad \text{for } -\frac{(x+4)^2}{x^2}$$

Question num	ber	Scheme	Ma	rks
6.	(a)	$16 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 - 3$	M1	
		= 13	A1c.a.o	(2)
	(b)	$\frac{26}{4+\sqrt{3}} \frac{4-\sqrt{3}}{4-\sqrt{3}}$	M1	
		$= \frac{26(4-\sqrt{3})}{13} = 8-2\sqrt{3} \qquad \text{or} \qquad 8+(-2)\sqrt{3} \qquad \text{or} \qquad a=8$	A1	(2)
		and $b = -2$	Tota	l 4 marks
(a)		M1 For 4 terms, at least 3 correct		
		e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$		
		4 ² instead of 16 is OK		
		$(4+\sqrt{3})(4+\sqrt{3})$ scores M0A0		
(b)		M1 For a correct attempt to rationalise the denominator can be implied		
		$NB \qquad \frac{-4+\sqrt{3}}{-4+\sqrt{3}} \text{ is OK}$		

Question number	Scheme		Marks
7.	a + (n-1)d = k $(u_{11} =) a + 10d = 9$	k = 9 or 11	M1 A1c.a.o.
	$\frac{n}{2}[2a + (n-1)d] = 77$ or $\frac{(a+1)}{2} \times n =$	l = 9 or 11	M1
	$(S_{11} =) \frac{11}{2}(2a+10d) = 77$ or $\frac{(a-1)^2}{2}$ e.g. $a+10d=9$	$\frac{+9)}{2}$ 11=77	A1
	e.g. $a + 10d = 9$ a + 5d = 7	a + 9 = 14	M1
	a = 5 and $d = 0.4$ or exact equivalent		A1 A1
			Total 7 marks
	1st M1 Use of u_n to form a linear equation $a + nd = 9$ is M0A0 1st A1 For $a + 10d = 9$. 2nd M1 Use of S_n to form an equation for S_n A correct equation based on S_n .		
	For 1^{st} 2 Ms they must write n or use $n = 11$. 3^{rd} M1 Solving (LHS simultaneously) or (RHS a linear equation in a)	
	Must lead to $a = \dots$ or $d = \dots$ and depends on	one previous M	
	$3^{rd} A1$ for $a = 5$		
	$4^{th} A1$ for $d = 0.4$ (o.e.)		
	ALT Uses $\frac{(a+l)}{2}$ $n = 77$ to get $a =$	5, gets second and third M1A1 i.e.	
	4/7		
	Then uses $\frac{n}{2}[2a + (n-1)d] = 77$ to get d, §	gets 1st M1A1 and 4th A1	
	MR Consistent MR of 11 for 9 leading to M1A0M1A0M1A1ftA1ft	a = 3, d = 0.8 scores	

Question	Marks	Scheme		
8. (a)	$b^2 - 4ac = 4p$	$a^2 - 4(3p+4) = 4p^2 - 12p - 16$ (=0)		
	M1, A1			
	or $(x+p)^2$	or $(x+p)^2 - p^2 + (3p+4) = 0$ $p^2 - 3p - 4 = 0$		
	(p-4)(p+1) = 0			
	M1			
		p = (-1 or) 4		
	A1c.s.o. (4)			
(b)	$x = \frac{-b}{2a}$ or $(x+p)(x+p) = 0$ $x =$			
	M1			
		$x (= -p) = \underline{-4}$		
	A1f.t. (2)			
		6		
(a)	1 st M1	For use of $b^2 - 4ac$ or a full attempt to complete the square		
leadin	g to a 3TQ in p			
		May use $b^2 = 4ac$. One of b or c must be correct.		
	1 st A1	For a correct 3TQ in p . Condone missing "=0" but all 3 terms		
must b	be on one side			
	$2^{nd} M1$	For attempt to solve their 3TQ leading to $p =$		
	2 nd A1	For $p = 4$ (ignore $p = -1$).		
		$b^2 = 4ac$ leading to $p^2 = 4(3p + 4)$ and then "spotting" $p = 4$		
scores	4/4.			

(b) M1 For a full method leading to a repeated root x = ...

A1f.t. For x = -4 (- their p)

Trial and Improvement

M2 For substituting values of p into the equation and attempting to

factorize.

(Really need to get to p = 4 or -1)

A2c.s.o. Achieve p = 4. Don't give without valid method being seen.

Question	Sch Marks	neme
number		
9. (a)	f(x) = x[(x-6)(x-2)+3] or	$x^3 - 6x^2 - 2x^2 + 12x + 3x = x$
	M1	
	$f(x) = x(x^2 - 8x + 15)$	b = -8 or c = 15
	A1	
		both and a
= 1	A1 (3)	
(h)	$(x^2 - 8x + 15) = (x - 5)(x - 3)$	
(0)		
	M1	
	f(x) = x(x-5)(x-3) A1 (2)	
	A1 (2)	
(c)		'
(0)		Shape
	B1	
	y	
	0 3 /	

both their 3 and their 5 B1f.t. (3)

and (0,0) by

implication

0 3 5 x

8

(a) M1 for a correct method to get the factor of x. x(as printed is the minimum.

 1^{st} A1 for b = -8 or c = 15.

-8 comes from -6-2 and must be coefficient of x, and 15 from 6x2+3 and must have no xs.

 2^{nd} A1 for a = 1, b = -8 and c = 15. Must have $x(x^2 - 8x + 15)$.

(b) M1 for attempt to factorise their 3TQ from part (a).

A1 for all 3 terms correct. They must include the x.

For part (c) they must have at most 2 non-zero roots of their f(x) = 0 to ft their 3 and their 5.

(c) 1st B1 for correct shape (i.e. from bottom left to top right and two turning points.)

2nd B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.

3rd B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3 and their 5.

	Question number	Marks	Scheme		
	110111001				
	10.(a)	$f(x) = \frac{2x^2}{2} + \frac{3}{2}$	$\frac{dx^{-1}}{-1}(+c)$	$-\frac{3}{x}$ is OK	
		M1A1			
		$(3,7\frac{1}{2})$ gives	$\frac{15}{2} = 9 - \frac{3}{3} + c$	3 ² or 3 ⁻¹ are OK instead of	f 9 or
	3	M1A1f.t.	1		
			$c = -\frac{1}{2}$		
			2		
		A1	(5)		
	(b)	$f(-2) = 4 + \frac{3}{2}$	$-\frac{1}{2}$ (*)		
		B1c.s.o.	(1)		
					I
	(c)	$m = -4 + \frac{3}{4} ,$	= -3.25		
		M1,A1			
		Equation of tangent is: $y - 5 = -3.25(x + 2)$			
		M1			
		4y + 13x + 6 = 0	<u>)</u>		o.e.
		A1 (4)			
_					
			10		
		et a se		n n±1	
	(a)	1 st M1	for some attempt to integrate		
		1 st A1	for both x terms as printed or	_	
		$2^{nd} M1$	for use of $(3, 7\frac{1}{2})$ or $(-2, 5)$ to	form an equation for c . Then	re
	must t	be some correct substitution. No $+c$ is M0. Some changes in x			n x
	terms	of function nee	ded.		
		2^{nd} A1f.t. for a correct equation for c. Follow through their integration.			on.
ı	l		They must tidy up fraction/fra	action and signs (e.g to +)	
	(b)	B1cso	If $(-2, 5)$ is used to find c in $(a$	a) B0 here unless they verify	
	f(3)=7	.5.			

(c) $1^{st} M1$ for attempting m = f(2) $1^{st} A1$ for $-\frac{13}{4}$ or -3.25

 2^{nd} M1 for attempting equation of tangent at (-2, 5), f.t. their m, based

on $\frac{\mathrm{d}y}{\mathrm{d}x}$.

 2^{nd} A1 o.e. must have a, b and c integers and = 0.

Treat (a) and (b) together as a batch of 6 marks.

Question number	Scheme Marks			
11.(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$ M1 A1			
	$y-2=\frac{1}{2}(x-1)$ or $y-8=\frac{1}{2}(x-11)$ o.e.			
	M1 $y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents e.g. A1c.a.o. (4)			
$\frac{6}{12}$	A1c.a.o. (4)			
(b)	Gradient of $l_2 = -2$			
	M1			
	Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$]			
	M1 $\frac{1}{2}x + \frac{5}{2} = -2x + 20$			
	M1			
	x = 7 and $y = 6$ depend on all 3			
Ms	A1, A1 (5)			
(c)	$RS^2 = (10-7)^2 + (0-6)^2 (= 3^2 + 6^2)$ M1			
	$RS = \sqrt{45} = 3\sqrt{5} (*)$			
	$RS = \sqrt{45} = 3\sqrt{5}$ (*) A1c.s.o. (2)			
(d)	$PQ = \sqrt{12^2 + 6^2}$, = $6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$ M1,A1			

Area =
$$\frac{1}{2}PQ$$
 $RS = \frac{1}{2}6\sqrt{5}$ $3\sqrt{5}$ dM1

A1 c.a.o. (4)

 $2^{nd}\,dM1$

previous M1.

15

for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be y over x . No formula condone 1st M1 (a) one sign slip, but if formula is quoted then there must be some correct substitution. 1st A1 for a fully correct expression, needn't be simplified. $2^{nd}\,M1$ for attempting to find equation of l_1 . $1^{st}\;M1$ for using the perpendicular gradient rule (b) $2^{nd} M1$ for attempting to find equation of l_2 . Follow their gradient provided different. 3rd M1 for forming a suitable equation to find *S*. for expression for RS or RS^2 . Ft their S coordinates (c) M1for expression for PQ or PQ^2 . 1st M1 (d) $PQ^2 = 12^2 + 6^2$ is M1 but $PQ = 12^2 + 6^2$ is M0 Allow one numerical slip.

for a full, correct attempt at area of triangle. Dependent on