June 2005 6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marks	S
1. (a)	<u>2</u> Penalise ±	B1 ((1)
(b)	$8^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{64}} \text{ or } \frac{1}{(a)^2} \text{ or } \frac{1}{\sqrt[3]{8^2}} or \frac{1}{8^{\frac{2}{3}}}$ $= \frac{1}{4} \text{ or } 0.25$ Allow \pm	M1	
	$=\frac{1}{4}$ or 0.25	A1 ((2)
		((3)
(b)	M1 for understanding that "-" power means reciprocal $8^{\frac{2}{3}} = 4$ is M0A0 and $-\frac{1}{4}$ is M1A0		
	$\frac{dy}{dx} = 6 + 8x^{-3}$ $x^{n} \rightarrow x^{n-1}$ both (6x ⁰ is OK)	M1 A1	(2)
(b)	$\int (6x - 4x^{-2})dx = \frac{6x^2}{2} + 4x^{-1} + c$	M1 A1 A1	
		((5)
(b)	In (a) and (b) M1 is for a correct power of x in at least one term. This could be 6 in (a) or + c in (b) 1^{st} A1 for one correct term in $x : \frac{6x^2}{2} \text{ or } + 4x^{-1}$ (or better simplified versions)		
	2 nd A1 for all 3 terms as printed or better in one line.		
	N.B. M1A0A1 is not possible. SC. For integrating their answer to part (a) just allow the M1 if $+c$ is present		

Question Number	Scheme		Marks
3. (a)	$x^{2} - 8x - 29 \equiv (x - 4)^{2} - 45$ $(x \pm 4)^{2}$ $(x - 4)^{2} - 16 + (-29)$ $(x \pm 4)^{2} - 45$	M1 A1 A1	(3)
ALT	Compare coefficients $-8 = 2a$ equation for a $a = -4$ <u>AND</u> $a^2 + b = -29$ b = -45	M1 A1 A1	(3)
(b)	$(x-4)^{2} = 45$ $\Rightarrow x-4 = \pm\sqrt{45}$ $x = 4 \pm 3\sqrt{5}$ (follow through their <i>a</i> and <i>b</i> from (a)) (c = 4) (d = 3 (\pm OK))	M1 A1 A1	(3) (6)
(a)	M1 for $(x \pm 4)^2$ or an equation for <i>a</i> (allow sign error ± 4 or ± 8 on ALT) 1stA1 for $(x - 4)^2 - 16(-29)$ can ignore -29 <u>or</u> for stating $a = -4$ and an equation for <i>b</i> 2 nd A1 for $b = -45$ Note M1A0 A1 is possible for $(x + 4)^2 - 45$ N.B. On EPEN these marks are called B1M1A1 but apply them as M1A1A1		
(b)	M1 for a full method leading to $x - 4 =$ or $x =$ (condone $x - 4 = \sqrt{-n}$) N.B. $(x-4)^2 - 45 = 0$ leading to $(x-4) \pm \sqrt{45} = 0$ is M0A0A0 A1 for <i>c</i> and A1 for <i>d</i> N.B. M1 and A1 for <i>c</i> do not need \pm (so this is a special case for the formula method) but \pm must be present for the <i>d</i> mark) <u>Note</u> Use of formula that ends with $\frac{8 \pm 6\sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark.		

Question Number	Scheme	Marks
4. (a)	Shape Points 4 + 4 + 5 + 2 = 10	B1 B1 (2)
(b)	-2 $(1,5)$ x	M1
	-2 and 4 max	A1 A1 (3) (5)
(a)	Marks for shape: graphs must have curved sides and round top. Don't penalise twice. (If both graphs are really straight lines then penalise B0 in part (a) only) 1^{st} B1 for \cap shape through (0, 0) and ((k,0) where $k > 0$) 2^{nd} B1 for max at (3, 15) and 6 labelled or (6, 0) seen Condone (15,3) if 3 and 15 are correct on axes. Similarly (5,1) in (b)	
(b)	M1 for \cap shape <u>NOT</u> through (0, 0) but must cut <i>x</i> -axis twice. 1 st A1 for -2 and 4 labelled or (-2, 0) and (4, 0) seen 2 nd A1 for max at (1, 5). Must be clearly in 1 st quadrant	
5.	$x = 1 + 2y \text{ and sub} \rightarrow (1 + 2y)^2 + y^2 = 29$ $\Rightarrow 5y^2 + 4y - 28(= 0)$ i.e. $(5y + 14)(y - 2) = 0$ $(y =)2 \text{ or } -\frac{14}{5}$ (o.e.) (both)	M1 A1 M1 A1
	$y = 2 \implies x = 1 + 4 = 5$; $y = -\frac{14}{5} \implies x = -\frac{23}{5}$ (o.e)	M1A1 f.t. (6)
	1 st M1 Attempt to sub leading to equation in 1 variable Condone sign error such as $1-2y$, $x = -(1+2y)$ penalise 1 st A1 only 1 st A1 Correct 3TQ (condone = 0 missing) 2 nd M1 Attempt to solve 3TQ leading to 2 values for y. 2 nd A1 Condone mislabelling $x =$ for $y =$ but then M0A0 in part (c). 3 rd M1 Attempt to find at least one x value (must use a correct equation) 3 rd A1 f.t. f.t. only in $x = 1+2y$ (3sf if not exact) Both values.	
6663 Coro	N.B False squaring. (e.g. $x^2 + 4y^2 = 1$) can only score the last 2 marks. Mathematics C1 3	

Question Number	Scheme	Marks
6. (a)	$6x+3 > 5-2x \qquad \Rightarrow 8x > 2$ $x > \frac{1}{4} \text{ or } 0.25 \text{ or } \frac{2}{8}$	M1 A1 (2)
(b)	(2x-1)(x-3) (> 0) Critical values $x = \frac{1}{2}$, 3 (both)	M1 A1
	- the	M
	Choosing "outside" region $x > 3$ or $x < \frac{1}{2}$	M1 A1 f.t.
(c)	x>3 or $\frac{1}{4} < x < \frac{1}{2}$ [(3, ∞) or $(\frac{1}{4}, \frac{1}{2})$ is OK]	(4) B1f.t. B1f.t. (2)
		(8)
(a)	M1 Multiply out and collect terms (allow one slip and allow use of = here)	
(b)	1 st M1 Attempting to factorise $3TQ \rightarrow x =$	
	2 nd M1 Choosing the outside region 2 nd A1 f.t. f.t. their critical values N.B.($x>3$, $x > \frac{1}{2}$ is M0A0)	
(c)	f.t. their answers to (a) and (b)	
	1^{st} B1 a correct f.t. leading to an <u>infinite</u> region 2^{nd} B1 a correct f.t. leading to a <u>finite</u> region	
	Penalise \leq or \geq once only at first offence. For $p < x < q$ where $p > q$ penalise the final A1 in (b).	
	e.g. (a) (b) (c) Mark	
	$x > \frac{1}{4} \qquad \qquad \frac{1}{2} < x < 3 \qquad \qquad \frac{1}{2} < x < 3 \qquad \qquad B0 B1$ $x > \frac{1}{4} \qquad \qquad x > 3, \ x > \frac{1}{2} \qquad \qquad x > 3 \qquad \qquad B1 B0$	
	$x > \frac{1}{4}$ $x > 3, x > \frac{1}{2}$ $x > 3$ B1 B0	

Question Number	Scheme	Marks
7. (a)	$(3 - \sqrt{x})^2 = 9 - 6\sqrt{x} + x$	M1
	$(3 - \sqrt{x})^2 = 9 - 6\sqrt{x} + x$ $\div by\sqrt{x} \longrightarrow 9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}$	A1 c.s.o.
		(2)
(b)	$\int (9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}})dx = \frac{9x^{\frac{1}{2}}}{\frac{1}{2}} - 6x + \frac{x^{\frac{3}{2}}}{\frac{3}{2}}(+c)$	M1 A2/1/0
	use $y = \frac{2}{3}$ and $x = 1$: $\frac{2}{3} = 18 - 6 + \frac{2}{3} + c$ c = -12	M1 A1 c.so.
	So $y = 18x^{\frac{1}{2}} - 6x + \frac{2}{3}x^{\frac{3}{2}} - 12$	A1f.t. (6)
(a) (b)	M1 Attempt to multiply out $(3 - \sqrt{x})^2$. Must have 3 or 4 terms, allow one sign error A1 cso Fully correct solution to printed answer. Penalise invisible brackets or wrong working 1 st M1 Some correct integration: $x^n \rightarrow x^{n+1}$ A1 At least 2 correct unsimplified terms A2 All 3 terms correct (unsimplified) 2 nd M1 Use of $y = \frac{2}{3}$ and $x = 1$ to find c. No + c is M0. A1c.s.o. for -12. (o.e.) Award this mark if " $c = -12$ " stated i.e. not as part of an expression for y	
	A1f.t. for 3 simplified x terms with $y =$ and a numerical value for c. Follow through their value of c but it must be a number.	
Question	Scheme	Marks

June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Number		
8. (a)	$y - (-4) = \frac{1}{3}(x - 9)$ or $\frac{y - (-4)}{x - 9} = \frac{1}{3}$ 3y - x + 21 = 0 (o.e.) (condone 3 terms with integer coefficients e.g. $3y + 21 = x$)	M1 A1 A1
(b)	Equation of l_2 is: $y = -2x$ (o.e.) Solving l_1 and l_2 : $-6x - x + 21 = 0$ p is point where $x_p = 3$, $y_p = -6$ x_p or y_p y_p or x_p	(3) B1 M1 A1 A1f.t. $(-2x)$ (4)
(c)	$(l_1 \text{ is } y = \frac{1}{3}x - 7)$ C is $(0, -7)$ or OC = 7 Area of $\triangle OCP = \frac{1}{2}OC \times x_p$, $= \frac{1}{2} \times 7 \times 3 = 10.5$ or $\frac{21}{2}$	(4) B1f.t. M1 A1c.a.o.
ALT	By Integration: M1 for $\pm \int_{0}^{x_{p}} (l_{1} - l_{2}) dx$, B1 ft for correct integration (follow through their l_{1}), then A1cao.	(3) (10)
(a)	M1 for full method to find equation of l_1 1stA1 any unsimplified form	
(b)	M1 Attempt to solve two linear equations leading to linear equation in one variable 2^{nd} A1 f.t. only f.t. their x_p or y_p in $y = -2x$ N.B. A fully correct solution by drawing, or correct answer with no working can score all the marks in part (b), but a partially correct solution by drawing only scores the first B1.	
(c)	B1f.t. Either a correct <i>OC</i> or f.t. from their l_1 M1 for correct attempt in letters or symbols for $\triangle OCP$ A1 c.a.o. $-\frac{1}{2} \times 7 \times 3$ scores M1 A0	
MR	(x-axis for y-axis) Get $C = (21, 0)$ Area of $\triangle OCP = \frac{1}{2}OC \times y_p = \frac{1}{2} \times 21 \times 6 = 63$ (B0M1A0)	

Question Number	Scheme	Marks
9 (a)	$(S =)a + (a + d) + \dots + [a + (n - 1)d]$ $(S =)[a + (n - 1)d] + \dots + a$ $2S = [2a + (n - 1)d] + \dots + [2a + (n - 1)d]$ } either 2S = n[2a + (n - 1)d]	B1 M1 dM1
	$S = \frac{n}{2} [2a + (n-1)d]$	A1 c.s.o (4)
(b)	(a = 149, d = -2) $u_{21} = 149 + 20(-2) = \pounds 109$	M1 A1 (2)
(C)	$S_n = \frac{n}{2} [2 \times 149 + (n-1)(-2)] \qquad (= n(150 - n))$	M1 A1
	$S_n = 5000 \Longrightarrow n^2 - 150n + 5000 = 0$ (*)	A1 c.s.o (3)
(d)	(n-100)(n-50) = 0 n = 50 or 100	M1 A2/1/0 (3)
(e)	$u_{100} < 0$ $\therefore n = 100$ not sensible	B1 f.t. (1) (13)
(a)	B1requires at least 3 terms, must include first and last terms, an adjacent termand dots!There must be + signs for the B1 (or at least implied see snippet 9D) 1^{st} M1for reversing series. Must be arithmetic with a, n and d or l . (+ signs notessential here) 2^{nd} dM1 for adding, must have 2S and be a genuine attempt. Either line is sufficient.Dependent on 1^{st} M1(NBAllow first 3 marks for use of l for last term but as given for final mark)	
(b)	M1 for using $a = 149$ and $d = \pm 2$ in $a + (n-1)d$ formula.	
(c)	M1 for using their a, d in S_n A1 any correct expression A1cso for putting S_n =5000 and simplifying to given expression. No wrong work NB EPEN has B1M1A1 here but apply marks as M1A1A1 as in scheme	
(d)	M1 Attempt to solve leading to $n =$ A2/1/0 Give A1A0 for 1 correct value and A1A1 for both correct	
(e)	B1 f.t. Must mention 100 and state $u_{100} < 0$ (or loan paid or equivalent) If giving f.t. then must have $n \ge 76$.	

Question Number	Scheme	Marks
10 (a)	x = 3, $y = 9 - 36 + 24 + 3 = 0$ (9 - 36 + 27=0 is OK)	B1 (1)
(b)	$\frac{dy}{dx} = \frac{3}{3}x^2 - 2 \times 4 \times x + 8 \qquad (x^2 - 8x + 8)$	M1 A1
	When $x = 3$, $\frac{dy}{dx} = 9 - 24 + 8 \Longrightarrow m = -7$	M1
	Equation of tangent: $y - 0 = -7(x - 3)$ y = -7x + 21	M1 A1 c.a.o (5)
(C)	$\frac{dy}{dx} = m$ gives $x^2 - 8x + 8 = -7$	M1
	$(x^2 - 8x + 15 = 0)$	
	(x-5)(x-3)=0	M1
	x = (3) or 5 5	A1
	$\therefore y = \frac{1}{3}5^3 - 4 \times 5^2 + 8 \times 5 + 3$ $y = -15\frac{1}{3} \text{ or } -\frac{46}{3}$	M1
	$y = 15^{1}$ or 46	
	$y = -13\frac{1}{3}$ or $-\frac{1}{3}$	A1 (5)
		(5)
(b)	1^{st} M1some correct differentiation ($x^n \rightarrow x^{n-1}$ for one term) 1^{st} A1correct unsimplified (all 3 terms)	(11)
	2 nd M1 substituting $x_p(=3)$ in their $\frac{dy}{dx}$ clear evidence	
	3 rd M1 using their <i>m</i> to find tangent at <i>p</i> . The <i>m</i> must be from their $\frac{dy}{dx}$ at x_p (= 3)	
	Use of $\frac{1}{7}$ here scores M0A0 but Could get all 3 Ms in Part (c).	
(c)	1 st M1 forming a correct equation " their $\frac{dy}{dx}$ = gradient of their tangent"	
	2 nd M1 for solving a quadratic based on their $\frac{dy}{dx}$ leading to $x = \dots$ The quadratic	
	could be simply $\frac{dy}{dx} = 0$.	
	3^{rd} M1 for using their x value (obtained from their quadratic) in y to obtain y coordinate. Must have one of the other two M marks to score this.	
MR	For misreading (0, 3) for (3, 0) award B0 and then M1A1 as in scheme. Then allow all M marks but no A ft. (Max 7)	