General Certificate of Education November 2004 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MBP2

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 2

Tuesday 2 November 2004 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP2.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P73810/1104/MBP2 6/6/ MBP2

Answer all questions.

1 The diagram shows a sector of a circle, centre O and radius $10\,\mathrm{cm}$. The angle of the sector is θ radians and the arc length is $4\,\mathrm{cm}$.

- (a) Find the value of θ . (2 marks)
- (b) Find the area of the sector. (2 marks)
- 2 A geometric series begins

$$720 - 576 + 460.8 - \dots$$

- (a) (i) Show that the common ratio of the series is -0.8. (1 mark)
 - (ii) Give a reason why the series is convergent. (1 mark)
- (b) Find the *n*th term of the series. (2 marks)
- (c) Show that the sum of the first 15 terms of the series is approximately 414. (2 marks)
- (d) Find the sum to infinity of the series. (2 marks)
- 3 A polynomial is given by $p(x) = x^3 2x^2 11x + 12$.
 - (a) Use the factor theorem to show that (x 4) is a factor of p(x). (2 marks)
 - (b) Express p(x) as a product of three linear factors. (4 marks)
 - (c) Hence find all the real solutions of

$$y^6 - 2y^4 - 11y^2 + 12 = 0 (3 marks)$$

4 Find, in radians, the values of x in the interval $0 \le x \le 2\pi$ for which

$$\sin\left(x + \frac{\pi}{3}\right) = -0.3$$

Give your answers to 3 significant figures.

(6 marks)

- 5 (a) Sketch the graph of y = |8x|. (2 marks)
 - (b) Sketch the graph of $y = \frac{1}{x^2}$, $x \neq 0$. (2 marks)
 - (c) (i) Verify that $x = \frac{1}{2}$ is a solution of the equation $\frac{1}{x^2} |8x| = 0$. (1 mark)
 - (ii) The graphs of $y = \frac{1}{x^2}$ and y = |8x| intersect at two points A and B. Find the coordinates of A and B. (2 marks)
- **6** The function f is defined for x > 0 by

$$f(x) = e^{4x} - \frac{1}{x}$$

- (a) (i) Differentiate f(x) with respect to x to find f'(x). (3 marks)
 - (ii) Hence prove that f is an increasing function. (2 marks)
- (b) Show that the area of the region bounded by the curve $y = e^{4x} \frac{1}{x}$, the x-axis, and the lines x = 1 and x = 2 is

$$\frac{e^4(e^4-1)}{4} - \ln 2$$

(You may assume that this region lies entirely above the x-axis.) (4 marks)

(c) The curve $y = e^{4x} - \frac{1}{x}$ and the curve $y = 7 - \frac{1}{x}$ intersect at the point A. Find the x-coordinate of A, giving your answer in the form $a \ln b$, where a and b are constants to be found.

(3 marks)

7 A curve C is defined for x > 0 by the equation

$$y = 2 \ln x - 4x$$

The curve has a stationary point P.

- (a) (i) Find $\frac{dy}{dx}$. (2 marks)
 - (ii) Find the gradient of the curve at the point where x = 2. (1 mark)
- (b) Show that the x-coordinate of the stationary point P is $\frac{1}{2}$. (2 marks)
- (c) (i) Find $\frac{d^2y}{dx^2}$. (1 mark)
 - (ii) Hence determine whether P is a maximum or a minimum point. (2 marks)
- (d) The gradient at the point Q on the curve C is 4.
 - (i) Show that the x-coordinate of Q is $\frac{1}{4}$. (2 marks)
 - (ii) Find the gradient of the line PQ, giving your answer in the form $a \ln 2 + b$, where a and b are integers to be found. (4 marks)

END OF QUESTIONS