General Certificate of Education June 2005 Advanced Level Examination

MATHEMATICS (SPECIFICATION A) Unit Pure 4

MAP4

Thursday 16 June 2005 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 20 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MAP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- Tie loosely any additional sheets you have used to the back of your answer book before handing it to the invigilator.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P77132/0605/MAP4 6/6/6/ MAP4

Answer all questions.

1 Solve the simultaneous equations

$$iz + 2w = 1$$

$$z - (1 + i)w = i$$

giving your answers for z and w in the form a + ib.

(6 marks)

2 The diagram shows the graph of $y = \cosh x$.

(a) Show that the arc length, s, of the curve between the points A and B is given by

$$s = \int_{-1}^{1} \cosh x \, dx \,. \tag{4 marks}$$

(b) Hence find the value of s, giving your answer in terms of e.

3 Two loci, L_1 and L_2 , in the Argand diagram, are defined by the following equations:

$$L_1: |z+2-3i|=1;$$

$$L_2: \arg(z-4) = \frac{1}{2}\pi.$$

(a) Sketch the two loci on one Argand diagram.

(4 marks)

(3 marks)

(b) Find the smallest possible value of $|z_1 - z_2|$ where the points z_1 and z_2 lie on the loci L_1 and L_2 respectively. (2 marks)

4 The cubic equation

$$x^3 - 11x - 150 = 0$$

has roots α , β and γ .

- (a) Write down the value of $\alpha + \beta + \gamma$. (1 mark)
- (b) (i) Explain why

$$\alpha^3 = 11\alpha + 150. \tag{1 mark}$$

(ii) Hence, or otherwise, show that

$$\alpha^3 + \beta^3 + \gamma^3 = 450$$
. (3 marks)

- (c) Given that $\alpha = -3 + 4i$, write down the other non-real root β and find the third real root γ .
- (d) Show that

$$(3-4i)^3 + (3+4i)^3 = -234$$
. (3 marks)

5 The sequence u_1 , u_2 , u_3 ... is defined by

$$u_1 = 0$$
, $u_{n+1} = \frac{1}{2}(u_n + n)$.

Prove by induction that, for all $n \ge 1$,

$$u_n = \left(\frac{1}{2}\right)^{n-1} + n - 2. \tag{6 marks}$$

TURN OVER FOR THE NEXT QUESTION

6 (a) Sketch the curve

$$y = \tanh x$$
,

indicating the asymptotes.

(2 marks)

(b) Use the relations

$$tanh x = \frac{\sinh x}{\cosh x}$$
 and $\cosh^2 x - \sinh^2 x = 1$

to show that:

(i)
$$\tanh^2 x = 1 - \operatorname{sech}^2 x$$
; (2 marks)

(ii)
$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$
. (3 marks)

(c) (i) Show that

$$\int_0^1 \tanh^2 x \, \mathrm{d}x = 1 - \tanh 1. \tag{3 marks}$$

(ii) Find

$$\int_0^1 \tanh^2 x \operatorname{sech}^2 x \, \mathrm{d}x, \qquad (4 \text{ marks})$$

giving your answer in terms of tanh 1.

(iii) Hence find

$$\int_0^1 \tanh^4 x \, \mathrm{d}x,$$

giving your answer in terms of tanh 1.

(2 marks)

- 7 (a) Express the complex numbers $\sqrt{3} + i$ and 2 2i in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (b) Solve the equation

$$(2-2i)z^3 = \sqrt{3}+i$$
,

giving each answer in the form $re^{i\theta}$, where r>0 and $-\pi<\theta\leqslant\pi$. (5 marks)

END OF QUESTIONS