General Certificate of Education June 2005 Advanced Level Examination

AQA

MATHEMATICS (SPECIFICATION A) Unit Mechanics 4

MAM4/W

Tuesday 28 June 2005 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 20 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MAM4/W.
- Answer all questions.
- Take $g = 9.8 \,\mathrm{m \, s^{-2}}$ unless otherwise stated.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- Tie loosely any additional sheets you have used to the back of your answer book before handing it to the invigilator.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

- A bag of sand of mass 9 kg is dropped from a stationary hot-air balloon. As the sand bag falls through the air, it is subjected to air resistance of magnitude $0.01 v^2 N$, where $v \, \text{m s}^{-1}$ is the speed of the sand bag at time t seconds.
 - (a) (i) Write down a differential equation connecting v and t. (2 marks)
 - (ii) Hence find the terminal velocity of the sand bag. (2 marks)
 - (b) Show that, when the speed of the sand bag is $v \, \text{m} \, \text{s}^{-1}$, it has fallen a distance of

450 ln
$$\frac{9g}{9g - 0.01v^2}$$
 metres

from the hot-air balloon.

(6 marks)

2 [In this question take Newton's gravitational constant to be $6.7 \times 10^{-11} \, \text{N} \, \text{m}^2 \, \text{kg}^{-2}$.]

A projectile of mass 100 kg is fired from a point on the surface of the Earth and it travels vertically upwards.

The Earth is modelled as a sphere of radius 6.4×10^6 m and mass 6.0×10^{24} kg.

Assume that all the forces acting on the projectile, except the force of attraction of the Earth, are negligible.

- (a) Find the acceleration of the projectile when it is at a distance x m from the **centre** of the Earth.

 (3 marks)
- (b) The projectile is fired with speed $u \, \text{m s}^{-1}$.

Find the minimum value of u if the projectile is to reach a height of 6×10^6 m above the **surface** of the Earth. (7 marks)

A satellite, S, orbits the planet Mars in a plane through O, the centre of Mars. The satellite is modelled as a particle of mass m, and Mars is modelled as a stationary sphere. At time t, the length of OS is r and OS is rotating about O with angular speed $\dot{\theta}$. The only force acting on S is directed towards O and has magnitude $km \dot{\theta}$, where k is a constant.

When r = a, the transverse component of the satellite's velocity is U.

(a) Express
$$r^2\dot{\theta}$$
 in terms of a and U. (4 marks)

(b) Hence show that
$$\ddot{r} = \frac{aU}{r^2} \left(\frac{aU}{r} - k \right)$$
. (4 marks)

- (c) Given that a is the minimum distance of the satellite from O during its orbit, deduce that $U \ge k$. (2 marks)
- 4 In a chemical process, the quantities of substances X, Y and Z are interdependent. At time t hours, the masses of X, Y and Z are x, y and z grams respectively.

The simultaneous differential equations modelling the process are:

$$\dot{x} = -3x$$
, $\dot{y} = 2x - y$ and $\dot{z} = 3y$.

(a) Given that x = 6 when t = 0, show that

$$x = 6e^{-3t}, t \geqslant 0. (3 marks)$$

(b) Given that y = 0 and z = 0 when t = 0, find:

(i)
$$y$$
 in terms of t ; (6 marks)

(ii)
$$z$$
 in terms of t . (3 marks)

(c) Find the time at which the masses of X and Y are equal. (2 marks)

TURN OVER FOR THE NEXT QUESTION

5 A block of mass 0.5 kg moves on a smooth horizontal surface. It is attached to the end B of a light elastic spring AB, where AB is horizontal.

The natural length of the spring is $0.5 \,\mathrm{m}$ and its stiffness is $5 \,\mathrm{N} \,\mathrm{m}^{-1}$.

The end A of the spring is pulled horizontally with constant speed of 1 m s^{-1} , causing the block to move across the horizontal surface.

At time t seconds, the length of the spring is x metres and the block is moving with speed $v \, \text{m s}^{-1}$. The motion of the block is subject to a resistive force of $v \, \text{N}$.

- (a) Write down an expression for the tension in the spring in terms of x. (2 marks)
- (b) Show that the equation of motion of the block is

$$\frac{\mathrm{d}v}{\mathrm{d}t} + 2v - 10x = -5. \tag{3 marks}$$

- (c) (i) Explain why $\dot{x} = 1 v$. (1 mark)
 - (ii) Hence show that

$$\ddot{x} + 2\dot{x} + 10x = 7$$
. (2 marks)

- (d) Find the general solution of this equation. (6 marks)
- (e) State the limiting value of x. Give a reason for your answer. (2 marks)

END OF QUESTIONS