

# Teacher Support Materials 2008

# **Maths GCE**

# Paper Reference MS/SS1B

Copyright © 2008 AQA and its licensors. All rights reserved. Permission to reproduce all copyrighted material has been applied for. In some cases, efforts to contact copyright holders have been unsuccessful and AQA will be happy to rectify any omissions if notified.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX. *Dr Michael Cresswell*, Director General.

1 The table shows the times taken, y minutes, for a wood glue to dry at different air temperatures,  $x \, ^{\circ}C$ .

| x | 10   | 12   | 15   | 18   | 20   | 22   | 25   | 28   | 30   |
|---|------|------|------|------|------|------|------|------|------|
| у | 42.9 | 40.6 | 38.5 | 35.4 | 33.0 | 30.7 | 28.0 | 25.3 | 22.6 |

#### (a) Calculate the equation of the least squares regression line y = a + bx. (4 marks)

(b) Estimate the time taken for the glue to dry when the air temperature is 21 °C.

(2 marks)

#### Student Response

| 1 | (a) y = 53,067 - 1.003 x √                                       | Leave<br>blank |
|---|------------------------------------------------------------------|----------------|
|   |                                                                  | T              |
|   | (b) y = 53.067 - 1.003 (21)                                      |                |
|   | y = 32,004                                                       |                |
|   | . The time taken for the gule to dry when the air temperature is | 2              |
|   | 21°C is 32.004 minutes ≈ 32 minutes.                             |                |
|   |                                                                  | $\square$      |
|   |                                                                  | 6              |
|   |                                                                  |                |
|   |                                                                  |                |

#### Commentary

This is a particularly brief but fully-correct answer to part (a) that has clearly been done, as encouraged, using a calculator's inbuilt function. The answer to part (b) shows a clear method and there is a sensible rounding of 32.004 to 32 (minutes).

| Q    | Solution                                                                                                                                                         | Marks      | Total | Comments                  |            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------------------------|------------|
| 1(a) | b (gradient) = -1.01 to -1(.00)                                                                                                                                  | B2         |       | AWFW                      | (-1.00337) |
|      | (b  (gradient) = -1.05  to  -0.95)                                                                                                                               | (B1)       |       |                           |            |
|      | a (intercept) = 53(.0) to 53.2<br>( $a$ (intercept) = 52(.0) to 54(.0))                                                                                          | B2<br>(B1) | 4     | AWFW                      | (53.06736) |
|      | OR                                                                                                                                                               |            |       |                           |            |
|      | Attempt at $\sum x$ , $\sum x^2$ , $\sum y$ and $\sum xy$                                                                                                        |            |       | 180, 3986, 297 and 5552.7 |            |
|      | or                                                                                                                                                               | (M1)       |       |                           |            |
|      | Attempt at $S_{xx}$ and $S_{xy}$                                                                                                                                 |            |       | 386 and                   |            |
|      | Attempt at correct formula for<br>b (gradient)                                                                                                                   | (m1)       |       |                           |            |
|      | b (gradient) = -1.01 to -1(.00)                                                                                                                                  | (A1)       |       | AWFW                      |            |
|      | a (intercept) = 53(.0) to 53.2                                                                                                                                   | (A1)       |       | AWFW                      |            |
|      | Accept <i>a</i> and <i>b</i> interchanged only if then<br>identified correctly in part (b), but B2 in<br>(b) does <b>not</b> necessarily imply 4 marks in<br>(a) |            |       |                           |            |
| (b)  | When $x = 21$ ,                                                                                                                                                  |            |       |                           |            |
|      | y = 31.7 to 32.2<br>( $y = 29.9$ to 34.1)                                                                                                                        | B2<br>(B1) | 2     | AWFW<br>AWFW              | (32.0)     |
|      | Evidence of use of 21 in c's equation                                                                                                                            | (M1)       |       |                           |            |
|      | Special Cases (if seen):                                                                                                                                         |            |       |                           |            |
|      | $y = \frac{33.0 + 30.7}{2} = 31.8$ to 31.9                                                                                                                       | (B1)       |       | AWFW; or equivalent       |            |
|      | v = 31.85 without working                                                                                                                                        | (B1)       |       |                           |            |
|      | Total                                                                                                                                                            | (          | 6     |                           |            |
|      |                                                                                                                                                                  |            |       | •                         | ı          |

2 A basket in a stationery store contains a total of 400 marker and highlighter pens. Of the marker pens, some are permanent and the rest are non-permanent. The colours and types of pen are shown in the table.

|                      | Colour |      |     |       |  |  |  |
|----------------------|--------|------|-----|-------|--|--|--|
| Туре                 | Black  | Blue | Red | Green |  |  |  |
| Permanent marker     | 44     | 66   | 32  | 18    |  |  |  |
| Non-permanent marker | 36     | 53   | 21  | 10    |  |  |  |
| Highlighter          | 0      | 41   | 37  | 42    |  |  |  |

A pen is selected at random from the basket. Calculate the probability that it is:

| (a) | a blue pen;                                             | (1 mark)  |
|-----|---------------------------------------------------------|-----------|
| (b) | a marker pen;                                           | (2 marks) |
| (c) | a blue pen or a marker pen;                             | (2 marks) |
| (d) | a green pen, given that it is a highlighter pen;        | (2 marks) |
| (e) | a non-permanent marker pen, given that it is a red pen. | (2 marks) |

|                                             | $\mathcal{G}_{1} \in \mathcal{A}_{1}$ |
|---------------------------------------------|---------------------------------------|
|                                             |                                       |
| 279) 66 + 53 + 41 = 160 = 0.4 V             |                                       |
| 400 400                                     |                                       |
| (b) $160 + 38 + 53 + 21 + 10 = 6.985 0.7$   |                                       |
| 900                                         |                                       |
| $(c) 0.9 \times 0.7 = 0.28$ (a) x (b) X (c) | 0                                     |
| (d) 92-1-2 0.105                            | )                                     |
| G000 1                                      | 0                                     |
| (e) = 0.0525 (                              |                                       |
|                                             | (3)                                   |
|                                             | $\smile$                              |

The candidate has derived (many simply quoted) correct answers to parts (a) & (b). In part (c), the candidate has misinterpreted 'or' as 'and' and also incorrectly assumed independence. In parts (d) & (e), the candidate appears to have no knowledge that the word 'given' infers that conditional probabilities are required. The majority of candidates made fewer, sometimes, no mistakes.

| Q    | Solution                                                                              | Marks | Total | Comments                                                                       |
|------|---------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------|
| 2(a) | $P(Blue) = \frac{160}{400} = 0.4 \text{ or } \frac{2}{5} \text{ or } \frac{160}{400}$ | B1    | 1     | CAO; or equivalent                                                             |
|      | In (b) to (e), method marks are for single<br>fractions, or equivalents, only         |       |       |                                                                                |
| (b)  | $P(Marker) = \frac{280}{400}$                                                         | M1    |       | $270 \leq$ Numerator $\leq 290$ and<br>Numerator $\leq$ Denominator $\leq 400$ |
|      | $= 0.7 \text{ or } \frac{7}{10} \text{ or } \frac{280}{400}$                          | A1    | 2     | CAO; or equivalent                                                             |
| (c)  | $P(B \text{ or } M) = P(B \cup M) =$                                                  |       |       |                                                                                |
|      | $\frac{160 + 280 - 119}{400} = \frac{280 + 41}{400} = \frac{321}{400}$                | M1    |       | $290 \le$ Numerator $\le 321$ and<br>Numerator $\le$ Denominator $\le 400$     |
|      | = 0.802 to 0.803 or $\frac{321}{400}$                                                 | A1    | 2     | AWFW/CAO (0.8025)                                                              |
| (d)  | $P(Green   Highlighter) = P(G   H) = \frac{42}{120}$                                  | М1    |       | Numerator = 42 and<br>$110 \le Denominator \le 120$                            |
|      | = 0.35 or $\frac{7}{20}$ or $\frac{42}{120}$                                          | A1    | 2     | CAO; or equivalent                                                             |
| (e)  | $P(Non-Permanent   Red) = P(P'   R) = \frac{21}{90}$                                  | M1    |       | Numerator = 21 and<br>$80 \le Denominator \le 90$                              |
|      | = 0.233 to 0.234 or $\frac{7}{30}$ or $\frac{21}{90}$                                 | A1    | 2     | AWFW/CAO (0.2333)                                                              |
|      | Total                                                                                 |       | 9     |                                                                                |

3 [Figure 1, printed on the insert, is provided for use in this question.]

The table shows, for each of a sample of 12 handmade decorative ceramic plaques, the length, x millimetres, and the width, y millimetres.

| Plaque | x   | У   |
|--------|-----|-----|
| А      | 232 | 109 |
| В      | 235 | 112 |
| С      | 236 | 114 |
| D      | 234 | 118 |
| Е      | 230 | 117 |
| F      | 230 | 113 |
| G      | 246 | 121 |
| Н      | 240 | 125 |
| Ι      | 244 | 128 |
| J      | 241 | 122 |
| K      | 246 | 126 |
| L      | 245 | 123 |

(a) Calculate the value of the product moment correlation coefficient between x and y. (3 marks)

(b) Interpret your value in the context of this question. (2 marks)
(c) On Figure 1, complete the scatter diagram for these data. (3 marks)

(d) In fact, the 6 plaques A, B, ..., F are from a different source to the 6 plaques G, H, ..., L.

With reference to your scatter diagram, **but without further calculations**, estimate the value of the product moment correlation coefficient between x and y for **each** source of plaque. (2 marks)

Question number  $Socar = Soc^2 - (Soc)^2 = 681575 -$ Leave 39 2 2859 blank 12 n  $\leq u^2$ 170342 -Sayy = Zy (1428 6495m n 12 340555-Say = 2859×1428 rzy 3 807 (3dp) ()36 strong positive correlation between the в2 here 15 width of the handmade ceramic plaques. length and Ø As the length increases, the molth (galso increases.  $(\infty)$ DC-=238.25 C 4=119 60 AUZON (0< r<1) Plaques A-F = + (positive) O d BO Plaques G-L = + (positive) 0.75 X (O<r<1)



Most candidates scored the 3 marks in (a) simply using their calculators' inbuilt function. In cases as illustrated here, working **may** score marks even if the answer is incorrect. The points are plotted correctly on the graph but a mark is lost for no labels. The line thereon is unnecessary and so is ignored. As was sadly often the norm, the candidate appears to have no idea that, for **each** source, the points are so scattered as to indicate virtually no correlation so inferring that  $r \approx 0$  for each.

Mark Scheme

| Q    | Solution                                           | Marks      | Total | Comments                                                      |
|------|----------------------------------------------------|------------|-------|---------------------------------------------------------------|
| 3(a) | r = 0.806 to 0.807                                 | B3         | 3     | AWFW (0.80656)                                                |
|      | (r = 0.8(0) to 0.81)                               | (B2)       |       | AWFW                                                          |
|      | (r = 0.7  to  0.9)                                 | (B1)       |       | AWFW                                                          |
|      | OP                                                 |            |       |                                                               |
|      | OR                                                 |            |       |                                                               |
|      | Attempt at                                         |            |       |                                                               |
|      | $\sum x, \sum x^2, \sum y, \sum y^2$ and $\sum xy$ |            |       | 2859, 681575, 1428, 170342 and 340555                         |
|      | or                                                 | (M1)       |       |                                                               |
|      | Attempt at $S_{xx}$ , $S_{yy}$ and $S_{xy}$        |            |       | 418.25, 410 and 334                                           |
|      | Attempt at correct formula for $r$                 | (m1)       |       |                                                               |
|      | r = 0.806 to 0.807                                 | (A1)       |       | AWFW                                                          |
|      |                                                    |            |       |                                                               |
| (0)  | Moderate/fairly strong/strong_nositive             |            |       | or equivalent; must qualify strength and<br>indicate positive |
|      | correlation (relationship/association)             | B1         |       | B0 for some/average/medium/verv                               |
|      | (                                                  |            |       | strong/etc                                                    |
|      | between                                            |            |       | -                                                             |
|      | length and width of plaques                        | B1         | 2     | Context; providing $0 \le r \le 1$                            |
|      | <b>T</b> <sup>1</sup> 1                            |            |       |                                                               |
| (c)  | Figure 1:                                          | <b>D</b> 2 | 2     |                                                               |
|      | (5 correct labelled points)                        | (B2)       | 5     | Deduct 1 mark if not labelled                                 |
|      | (4 correct labelled points)                        | (B1)       |       | Dedder I mark if not labelled                                 |
|      | ( · · · · · · · · · · · · · · · · · · ·            | (=-)       |       |                                                               |
| (d)  | A to F: $r = -0.2$ to $+0.2$                       | B1         |       | AWFW (-0.0275)                                                |
|      |                                                    |            |       | No penalties for calculations                                 |
|      | Accept 'Zero' but not 'No' correlation             |            |       | Statements must include a single value                        |
|      | G to I: $r = -0.2$ to $\pm 0.2$                    | B1         | 2     | within range                                                  |
|      | G 10 L. 70.2 10 +0.2                               | 51         | 2     | (-0.0190)                                                     |
|      | Special Cases:                                     |            |       |                                                               |
|      |                                                    |            |       |                                                               |
|      | r = -0.2 to $+0.2$ with no sources                 | (B1)       |       | AWFW                                                          |
|      | r = -0.2 to +0.2 for each/both                     | (B2)       |       | AWFW; or equivalent identification                            |
|      | source(s)                                          |            |       | · · ·                                                         |
|      | If B0 B0 but both values of                        |            |       |                                                               |
|      | r = -0.4 to +0.4                                   | (B1)       |       | AWFW                                                          |
|      | Total                                              | , í        | 10    |                                                               |

## MS/SS1B

#### **Question 4**

| 4 | 4 The runs scored by a cricketer in 11 innings during the 2006 season were as follows. |      |
|---|----------------------------------------------------------------------------------------|------|
|   | 47 63 0 28 40 51 <i>a</i> 77 0 13 35                                                   |      |
|   | The exact value of $a$ was unknown but it was greater than 100.                        |      |
|   | (a) Calculate the median and the interquartile range of these 11 values. (4 mar        | ·ks) |
|   | (b) Give a reason why, for these 11 values:                                            |      |
|   | (i) the mode is <b>not</b> an appropriate measure of average;                          |      |
|   | (ii) the range is <b>not</b> an appropriate measure of spread. (2 mar                  | ·ks) |

(4)0, 0, 13, 28, 35, 40, 47, 51, 63, 77, a a) medicin =  $11 + 1 = 6^{4n}$  term = 40 b) LQ = 11 + 1 = 3rd term = 13  $UQ = 3 \times 3 = 9^{th}$  term = 63 IQR = 63 - 13 = 50. The inter-quartile range is 50 b) i) Because none of the values repeate, so mode is not valid ii) Range is also not valid on we do not know the value of the top end of the range BI As a is not given. 3

The candidate has ranked the 11 values and then identified correct values for the median, (quartiles) and the interquartile range. As was often the case when answering part (b)(i), the candidate has stated 'none of the values repeat', this despite listing two values of zero in part (a)! Part (b)(ii) was answered correctly by indicating that the maximum value, a, is unknown.

| Q      | Solution                                                                                                                                | Marks      | Total | Comments                              |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------------------------------------|--|
| 4(a)   | Ordering:<br>0 0 13 28 35 40 47 51 63 77 a                                                                                              | M1         |       | May be implied by 40 and/or 63 and 13 |  |
|        | Median $(6^{th}) = 40$                                                                                                                  | B1         |       | CAO                                   |  |
|        | $IQR = Q_3(9^{th}) - Q_1(3^{rd})$                                                                                                       |            |       |                                       |  |
|        | = 63 - 13<br>= 50                                                                                                                       | (B1)<br>B2 | 4     | Identification of 63 and 13<br>CAO    |  |
| (b)(i) | <i>Mode:</i><br>Zero is not representative / sensible reason<br>Wide range of (known) values<br>Small number of values mostly different | B1         |       | Or equivalent                         |  |
| (ii)   | <i>Range:</i><br>Largest value, <i>a</i> , is unknown<br>Cannot be calculated                                                           | B1         | 2     | Or equivalent                         |  |
|        | Total                                                                                                                                   |            | 6     |                                       |  |

- 5 When a particular make of tennis ball is dropped from a vertical distance of 250 cm on to concrete, the height, *X* centimetres, to which it first bounces may be assumed to be normally distributed with a mean of 140 and a standard deviation of 2.5.
  - (a) Determine:
    - (i) P(X < 145); (3 marks)
    - (ii) P(138 < X < 142). (4 marks)
  - (b) Determine, to one decimal place, the maximum height exceeded by 85% of first bounces. (4 marks)
  - (c) Determine the probability that, for a random sample of 4 first bounces, the mean height is greater than 139 cm. (4 marks)



### MS/SS1B

| nber                     |                |
|--------------------------|----------------|
| b). Let h be the bright. | Leave<br>blank |
| h-140: = 1. 6364.        | BI             |
| 2.5 V                    | M              |
| h 2 143                  | AI             |
| MATXHIEGHT = 143.        | AO             |
|                          |                |
| C) P(X7139)              | 81             |
| = D (Z 7139-140:)        | M              |
| 2.5/17                   | 200            |
| 2 D (Z >-0.8).           | 1100           |
| =-p1 (0.6(Z))            | AO             |
| 2 0.212 //.              | 6              |
| 1                        | (12)           |
|                          |                |

#### Commentary

This is a typical less than fully-correct answer. The very standard parts (a)(i) & (ii) are answered correctly for 3 + 4 = 7 marks. In part (b), as here, the majority of candidates opted for  $85\% \Rightarrow z = (+)1.03$  to (+)1.04 and so obtained an answer greater than the mean of 140. Either a little thought or a sketch should have suggested that the answer must be less than 140? I part (c), the candidate has made the correct start of finding the standard error, then standardising correctly to P(Z > -0.8) but has then made the common error of finding the equivalent of P(Z < -0.8). Again a little thought or a sketch should have suggested that the answer must be greater than 0.5.

| Q      | Solution                                                                                                   | Marks | Total | Comments                                                                                                     |
|--------|------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------|
| 5      | Height $X \sim N(140, 2.5^2)$                                                                              |       |       |                                                                                                              |
| (a)(i) | $P(X < 145) = P\left(Z < \frac{145 - 140}{2.5}\right) =$                                                   | M1    |       | Standardising (144.5, 145 or 145.5) with 140 and ( $\sqrt{2.5}$ , 2.5 or 2.5 <sup>2</sup> ) and/or (140 - x) |
|        | P(Z < 2) =                                                                                                 | A1    |       | 2 CAO; ignore sign                                                                                           |
|        | 0.977 to 0.98(0)                                                                                           | A1    | 3     | AWFW (0.97725)                                                                                               |
| (ii)   | P(138 < X < 142) =<br>P(X < 142) - P(X < 138) =                                                            | M1    |       | Difference (142 – 138)                                                                                       |
|        | $P(Z \le 0.8) - P(Z \le -0.8) =$                                                                           | B1    |       | 0.8 CAO                                                                                                      |
|        | $P(Z < 0.8) - \{1 - P(Z < 0.8)\} = (0.78814) - (1 - 0.78814) =$                                            | ml    |       | Correct area change                                                                                          |
|        | 0.576 to 0.58(0)                                                                                           | A1    | 4     | AWFW (0.57628)                                                                                               |
| (b)    | $0.85 (85\%) \Rightarrow z = -1.03$ to $-1.04$                                                             | B1    |       | AWFW; ignore sign (-1.0364)                                                                                  |
|        | $z = \frac{x - 140}{2.5}$                                                                                  | M1    |       | Standardising x with 140 and 2.5; allow $(140 - x)$                                                          |
|        | $= \pm 1.03$ to $\pm 1.04$                                                                                 | A1    |       | Equating z-term to the z-value                                                                               |
|        | Hence $x = 137.3$ to 137.5                                                                                 | A1    | 4     | AWFW; CSO (137.41)                                                                                           |
| (c)    | Variance of $\overline{X}_4 = \frac{2.5^2}{4} = 1.56(25)$<br>SD of $\overline{X}_4 = \frac{2.5}{2} = 1.25$ | B1    |       | CAO; stated or used                                                                                          |
|        | $P(\overline{X}_{4} > 139) = P\left(Z > \frac{139 - 140}{\sqrt{2.5^{2}/4}}\right) =$                       | М1    |       | Standardising 139 with 140 and 1.25;<br>allow (140 – 139)                                                    |
|        | P(Z > -0.8) = P(Z < 0.8) =                                                                                 | ml    |       | Correct area change                                                                                          |
|        | 0.788 to 0.79(0)                                                                                           | A1    | 4     | AWFW (0.78814)                                                                                               |
|        | Total                                                                                                      |       | 15    |                                                                                                              |

## MS/SS1B

#### Question 6

| 6 | For the adult population of the UK, 35 per cent of men and 29 per cent of women do not wear glasses or contact lenses. |               |                                                                                                                             |                       |  |
|---|------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
|   | (a) Determine the probability that, in a random sample of 40 men:                                                      |               |                                                                                                                             |                       |  |
|   |                                                                                                                        | (i)           | at most 15 do not wear glasses or contact lenses;                                                                           | (3 marks)             |  |
|   |                                                                                                                        | (ii)          | more than 10 but fewer than 20 do not wear glasses or contact lenses.                                                       | (3 marks)             |  |
|   | (b)                                                                                                                    | Calc<br>glass | culate the probability that, in a random sample of 10 women, exactly 3 do ses or contact lenses.                            | not wear<br>(3 marks) |  |
|   | (c)                                                                                                                    | (i)           | Calculate the mean and the variance for the number who <b>do</b> wear glasse contact lenses in a random sample of 20 women. | es or<br>(3 marks)    |  |
|   |                                                                                                                        | (ii)          | The numbers wearing glasses or contact lenses in 10 groups, each of 20 had a mean of 16.5 and a variance of 2.50.           | women,                |  |
|   |                                                                                                                        |               | Comment on the claim that these 10 groups were <b>not</b> random samples.                                                   | (3 marks)             |  |



After a correct answer to part (a)(i), many candidates dropped at least 1 mark, as illustrated here, by not using the tables correctly for P(10 < M < 20). The formula for B(10, 0.29) was used correctly to find P(F = 3) in part (b). In part (c)(i), the candidate has noted the emboldened word '**do**' and so moved to B(10, 0.71) to find correct values for the mean and variance. As a result, correct comparisons are made for the results stated in part (c)(i).

| Q           | Solution                                                                                | Marks         | Total | Comments                                               |
|-------------|-----------------------------------------------------------------------------------------|---------------|-------|--------------------------------------------------------|
| б           | Binomial distribution                                                                   | M1            |       | Used somewhere in question                             |
| (a)(i)      | <i>M</i> ~ B(40, 0.35)                                                                  | A1            |       | Used; may be implied                                   |
|             | $P(M \le 15) = 0.69(0)$ to 0.696                                                        | A1            | 3     | AWFW (0.6946)                                          |
| (ii)        | P(10 < M < 20) = 0.9637  or  0.9827                                                     | M1            |       | Accept 3 dp accuracy                                   |
|             | minus 0.1215 or 0.0644                                                                  | M1            |       | Accept 3 dp accuracy                                   |
|             | = 0.84(0) to 0.843                                                                      | A1            | 3     | AWFW (0.8422)                                          |
|             | OR                                                                                      |               |       |                                                        |
|             | B(40, 0.35) expressions stated for<br>at least 3 terms within $10 \le M \le 20$         | (M1)          |       | Or implied by a correct answer                         |
|             | Answer = $0.84(0)$ to $0.843$                                                           | (A2)          |       | AWFW                                                   |
| <b>(b</b> ) | $W \sim B(10, 0.29)$                                                                    | B1            |       | Used; may be implied                                   |
|             | $P(W=3) = {\binom{10}{3}} (0.29)^3 (0.71)^7$                                            | M1            |       | Stated; may be implied                                 |
|             | = 0.266 to 0.2665                                                                       | A1            | 3     | AWFW (0.2662)<br>Note: B(10, 0.3) $\Rightarrow$ 0.2668 |
| (c)(i)      | n = 20 $p = 0.71$                                                                       | B1            |       | Stated or used; may be implied by 14.2                 |
|             | Mean, $\mu = np = 14.2$                                                                 | B1            |       | CAO                                                    |
|             | Variance, $\sigma^2 = np(1-p) = 4.11$ to 4.12                                           | B1            | 3     | AWFW (4.118)                                           |
| (ii)        | Mean of 16.5 is greater/different or<br>16.5/20 = 0.825 is greater/different to<br>0.71 | B1dep         |       | Dependent on $\mu = 14.2$                              |
|             | Means and variances are different                                                       | (B2,1<br>dep) |       |                                                        |
|             | Variance of 2.50 is smaller/different                                                   | B1dep         |       | Dependent on $\sigma^2$ = 4.11 to 4.12                 |
|             | Suggests claim that groups are not random samples is justified                          | B1dep         | 3     | Dependent on previous 2 marks<br>Or equivalent         |
|             | Total                                                                                   |               | 15    |                                                        |

7 Vernon, a service engineer, is expected to carry out a boiler service in one hour.

One hour is subtracted from each of his actual times, and the resulting differences, x minutes, for a random sample of 100 boiler services are summarised in the table.

| Difference                   | Frequency |
|------------------------------|-----------|
| $-6 \leq x < -4$             | 4         |
| $-4 \leqslant x < -2$        | 9         |
| $-2 \leqslant x < 0$         | 13        |
| $0 \leq x < 2$               | 27        |
| $2 \leq x < 4$               | 21        |
| $4 \leq x < 6$               | 15        |
| $6 \leq x < 8$               | 7         |
| $8 \leqslant x \leqslant 10$ | 4         |
| Total                        | 100       |

- (a) (i) Calculate estimates of the mean and the standard deviation of these differences. *(4 marks)* 
  - (ii) Hence deduce, in minutes, estimates of the mean and the standard deviation of Vernon's actual service times for this sample. (3 marks)
- (b) (i) Construct an approximate 98% confidence interval for the mean time taken by Vernon to carry out a boiler service. (4 marks)
  - (ii) Give a reason why this confidence interval is approximate rather than exact.

(1 mark)

(c) Vernon claims that, more often than not, a boiler service takes more than an hour and that, on average, a boiler service takes much longer than an hour.

Comment, with a justification, on **each** of these claims. (2 marks)

#### Student Response (next page)

Question number Leave 1. blank -6-4=-5 -4-2=-3 ari -2-0 2+4=30 + 2 = 1T 2 8+10=9 4+6=5 6+8=7 Je = 1. 9 minutes 4 3. 320 manutes Ont + 60 = 61 . 9 minutes 11. 1.9 = mean -3.320 minutes standard deviation = b.i. x=20 Jn 0.98 0.01 0.01 3263 1.9±2.3263× 6 32. 2100 3 62.67 ¥ ji. the standard deviation is are because they est have been calculated graiped frequency table rather using the from a 7

Question number Leave he graups rather than the actual blank m U rese estimates of 10 the 50 meanan BI viation were then used S sto interval so this is an al an 210x mation a that more otter C. UTY ser NO Sa om t A 0 Nee an B te ral ence C vice 20 VII 50 Sence PNP 00 nge na a Commo re a 0 N H averax ion a n 101 rex O 50 co l Sma Su **Z**T Consiste 50 nex a me 550 than S 00 B 0 orden interva an NS 11 ra Later Here 14

This is an unusually fully correct answer to this final question; in fact from a 'perfect' script! Whilst correct answers to part (a)(i) were not unusual, far too many candidates could not answer part (a) (ii) correctly; usually through the addition of 1 or 100 to both answers in part (a)(i). Surely candidates at this level should know that one hour is 60 minutes? The two answers in part (b) are again correct and show a clear understanding of the technique needed. The verbose answer in part (c) does include the common misunderstanding that a confidence interval is for values rather than a mean but, in this instance, this error is just 'excused' in view of the other two salient points.

| Q       | Solution                                                                                                                            | Marks            | Total | Comments                                                                      |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------------------------------------------------------------------------------|--|
| 7(a)(i) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                |                  |       |                                                                               |  |
|         | Mean $(\bar{x}) = 1.9$<br>(0.9 to 2.9)                                                                                              | B2<br>(B1)       |       | CAO (190)<br>AWFW                                                             |  |
|         | Standard deviation $(s_{n-1} \text{ or } \sigma_n) = 3.3(0)$ to 3.32<br>(3(.00) to 3.5(0))                                          | B2<br>(B1)       | 4     | (1452)<br>AWFW (3.31967)<br>AWFW (3.30303)                                    |  |
|         | If no marks scored but $\sum fx$ attempted<br>and result divided by 100                                                             | (M1)             |       |                                                                               |  |
| (ii)    | Mean = $60 + \overline{x}$<br>= $61.9$<br>Standard deviation = $3.3(0)$ to $3.32$                                                   | M1<br>A1√<br>B1√ | 3     | on (a)(i)<br>on (a)(i); accept 'same as' only<br>providing answer in (a)(i)   |  |
| (b)(i)  | 98% $\Rightarrow z = 2.32$ to 2.33<br>( $\Rightarrow t = 2.36$ to 2.37)                                                             | B1               |       | AWFW         (2.3263)           AWFW         (2.364)                          |  |
|         | CI for $\mu$ is $\overline{x} \pm z/t \times \frac{s_{n-1} \text{ or } \sigma_n}{\sqrt{n \text{ or } n-1}}$                         | М1               |       | Used; must have $\sqrt{n}$ with $n \ge 1$                                     |  |
|         | Thus $61.9 \pm 2.3263 \times \frac{3.3 \text{ to } 3.32}{\sqrt{100 \text{ or } 99}}$                                                | A1√              |       | on (a)(ii) and $z/t$ only                                                     |  |
|         | Hence 61.9 ± (0.7 to 0.8)<br>or (61.1 to 61.2, 62.6 to 62.7)                                                                        | A1               | 4     | Accept 1.03 ± (0.012 to 0.013)<br>AWFW<br>Accept (1.01 to 1.02, 1.04 to 1.05) |  |
| (ii)    | Mean and SD based upon grouped data<br>SD ( <b>not mean</b> ) calculated from a sample<br>CLT used / Times (may) not (be)<br>normal | B1               | 1     | Actual times/values unknown<br>Or equivalent                                  |  |
| (c)     | S > 1 hour or 60 minutes:<br>Valid as 74/100 or 0.74 or 74% > 50%                                                                   | B1               |       | Must use 74 etc<br>Or equivalent                                              |  |
|         | $\overline{S} >> 1$ hour or 60 minutes:<br>Not valid as UCL $\approx 1$ hour<br>(Accept Both limits $\approx 1$ hour)               | B1dep            | 2     | Dependent on<br>UCL = 62.6 to 62.7 or<br>UCL = 1.04 to 1.05                   |  |
|         | Total                                                                                                                               |                  | 14    |                                                                               |  |
|         | TOTAL                                                                                                                               |                  | 75    |                                                                               |  |