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INSTRUCTIONS
• Use black ink. You can use an HB pencil, but only for graphs and diagrams.
• Write your answer to each question in the space provided in the Printed Answer 

Booklet. You can use extra paper if you need to, but you must clearly show your 
candidate number, the centre number and the question numbers.

• Fill in the boxes on the front of the Printed Answer Booklet.
• Answer all the questions.
• Where appropriate, your answer should be supported with working. Marks might be 

given for using a correct method, even if your answer is wrong.
• Give your final answers to a degree of accuracy that is appropriate to the context.
• Do not send this Question Paper for marking. Keep it in the centre or recycle it.

INFORMATION
• The total mark for this paper is 60.
• The marks for each question are shown in brackets [ ].
• This document has 8 pages.

ADVICE
• Read each question carefully before you start your answer.
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You must have:
• the Printed Answer Booklet
• the Formulae Booklet for Further Mathematics B 

(MEI)
• a computer with appropriate software
• a scientific or graphical calculator

Friday 22 October 2021 – Afternoon 
A Level Further Mathematics B (MEI)
Y436/01 Further Pure with Technology
 Time allowed: 1 hour 45 minutes
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Answer all the questions.

1 A family of circles is given by the equation

  ( ) ( )cos sinx a y a2 2 12 2- + - =  (*)

 where the parameter a satisfies .a0 21G r

 (a) Use a slider (for a) to investigate this family of circles. Write down the cartesian equation of 
the curve which contains the centre of each circle in the family. [1]

 (b) Let b and c be real numbers with .b c0 1 1G r  Find and simplify an expression, in terms of 
b and c, for the distance between the centre of the circle corresponding to a b=  and the centre 
of the circle corresponding to .a c=  [2]

 (c) Hence, or otherwise, find a condition on b and c for the two circles in part (b) to touch. [2]

 A curve which every member of a family of curves or lines touches tangentially is called an 
envelope of the family.

 (d) By tracing the family of curves using a slider (for a), or otherwise, sketch the envelope of the 
family (*) in the Printed Answer Booklet. [2]

 (e) Write down the equations of the curves which make up the envelope for this family (*). [2]

2 This question is about the family of straight lines which pass through the points (0, a) and ( , )a1 2  
where the parameter a is any real number.

 (a) In terms of a, find the equation of the straight line which passes through the points (0, a) and 
( , ) .a1 2  [2]

 (b) Let b and c be distinct real numbers. Given that the straight line corresponding to a b=  and 
the straight line corresponding to a c=  are parallel, find b in terms of c. [3]

 (c) By tracing the family using a slider (for a), or otherwise, sketch the envelope of this family in 
the Printed Answer Booklet. [2]

 (d) Determine, in the form ( ),y xh=  the cartesian equation of the envelope for this family. [5]
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3 (a) (i) Create a program which returns the highest common factor of positive integers m and n. 
Write out your program in full in the Printed Answer Booklet. [3]

   In the rest of this question the highest common factor of positive integers m and n is 
denoted by (m, n).

  (ii) Use your program to find (74333, 89817). [1]

 (b) Euler’s totient function ( ),n{  where n is a positive integer, is defined to be the number of 
integers m with m n1 G G  such that ( , ) .m n 1=

  For example ( )6 2{ =  because ( , ) ,1 6 1=  ( , ) ,2 6 2=  ( , ) ,3 6 3=  ( , ) ,4 6 2=  ( , )5 6 1=  and 
( , ) .6 6 6=

  (i) Extend your program in (a)(i) to create a program which returns ( )n{  for a given positive 
integer n. [3]

  (ii) Use your program to find ( )128{  and ( ) .1000{  [2]

  (iii) For a positive integer n, determine ( )2n{  in terms of n. [2]

  (iv) For a positive integer n, determine ( )10n{  in terms of n. [3]

 (c) For any positive integer k, let ( )kF  be the number of distinct fractions n
m  where  .m n k0 1 1 G

  For example F(4) = 5, since there are five fractions which satisfy the required condition, 

  namely , , , , .4
1
3
1
2
1
3
2
4
3

  (i) Find ( )5F  and ( ) .6F  [2]

  (ii) Explain why, for any positive integer l, ( ) ( ) ( ) .l l l1 1F F {+ = + +  [2]

  (iii) Determine ( ) .100F  [2]
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4 This question concerns the family of differential equations

 ( ) ( ) ( )arctanx
y

x
x a y x2 1

1 0d
d

H=
+
-

+  (*)

 where a is a constant.

 (a) (i) Find the solution to (*) in the case a 0=  in which y 0=  when .x 0=  [1]

  (ii) Sketch this solution for x0 5G G  in the Printed Answer Booklet. [1]

  (iii) For this solution, determine the maximum value of y for .x0 5G G  [2]

 (b) Fig 4.1 and Fig 4.2 show tangent fields for two distinct but unspecified values of a. In each 
case a sketch of the solution curve ( )y xg=  which passes through the origin is shown for 

.x0 1G G
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  (i) For the case in Fig 4.1 suggest a possible value of a. [1]

  (ii) For the case in Fig 4.2 suggest a possible value of a. [1]

  (iii) In each case, continue the sketch of the solution curves for x1 3G G  in the Printed 
Answer Booklet. [2]

  (iv) State a feature which is present in one of the curves in part (iii) but not in the other. [1]
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 (c) (i) A modified Euler method for the solution of the differential equation ( , )x y x
y

f d
d

=  is as 
follows.

     ( , )k h x yf n n1 =

     ( , )k h x h y kf n n2 1= + +

     x x hn n1 = +
+

     ( ) .y y k k2
1

n n1 1 2= + +
+

   Construct a spreadsheet to solve (*), so that the value of a and the value of h can be varied, 
in the case x 00 =  and .y 00 =  State the formulae you have used in your spreadsheet. [4]

  (ii) In this part of the question . .a 0 5=  Use your spreadsheet with .h 0 1=  to approximate the 
value of y when x 5=  for the solution to (*) in which y 0=  when .x 0=  [1]

  (iii) In this part of the question .a 1=  Use your spreadsheet with .h 0 1=  to approximate the 
value of y when x 5=  for the solution to (*) in which y 0=  when .x 0=  [1]

  There is a value c such that

   • if ca 2  then the solution in which y 0=  when x 0=  increases without bound as 
x increases from 0

   and

   • if a c1  then the solution in which y 0=  when x 0=  increases initially but then peaks 
and decreases as x increases from 0.

  (iv) Use your spreadsheet to find c correct to 2 decimal places. [4]

END OF QUESTION PAPER
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