

AS Mathematics

MS1A/W Unit Statistics 1A Mark scheme

6360 June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk.

Copyright $\ensuremath{\textcircled{O}}$ 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1A/W

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- GN3 In general, a correct answer (to accuracy required) without units scores full marks
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3})

Q	Solution	Marks	Total	Comments
1				
(a)				
	r = 0.959	B3		AWRT (0.95915)
	= <u>0.95 to 0.97</u>	(B2)		AWFW
	= 0.9 to 0.99	(B1)		AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$ or Attempt at $S_{xx} S_{yy} \& S_{xy}$	(M1)		1980 327726 1896 300598 & 313826 (all 5 attempted) 1026 1030 & 986 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r	(m1)		
	r = 0.959	(A1)		AWRT
			3	
(b)				
	(Very/extremely) strong positive	Bdep1		Dependent on $0.9 \le r \le 0.99$
NT - 4	(linear) correlation	•	r with "aa	
Notes	 Statements must include the words "strong" and "positive" together with "correlation" or "association" or "relationship"; ignore additional comments unless clearly contradictory The only acceptable qualifiers for "strong" are "very" or "extremely" The use of: "highly/moderately/quite/fairly/relatively/reasonably/respectively strong" ⇒ Bdep0 The use of: "high or big or good or some or moderate or medium or average" ⇒ Bdep0 			
				5- /F*
	between			
	Height(s) and arm span(s) of men aged 21 to 40	B1	2	Context; providing $-1 < r < 1$ Must contain at least the 4 emboldened words
Notes	1 "As heights of men (aged 21 to 40) increase so do arm span	ns" (OE) B	-	L
1.0000	2 "As heights/x increase so do arm spans/y" (OE) Bdep0 B0			
		Total	5	

Q	Solution	Marks	Total	Comments
2				
	Ordered data: 110 115 230 370 370 425 445	5 450	455 480	550 550 575 585 590
(a)	Range = $590 - 110 = 480$	B1		CAO
	Two modes/more than one mode/no single mode/no unique mode	B1	2	OE
(b)	A sensible attempt at ordering the data	M1		Can be implied
	Median = 450	A1		CAO; (8 th value)
	IQR = 550 - 370 = 180	A1	3	CAO; $(12^{th} \text{ value} - 4^{th} \text{ value})$
Notes	1 Answers of 455 and 180 with no method \Rightarrow M1 A1 A1 2 An answer of 450 or/and 180 with incorrect method(s) \Rightarrow M1 A1 A0 or M1 A0 A1 or M0 A0 A0 3 Unordered data \Rightarrow median = 480 and IQR = 370 - 590 = $\pm 220 \Rightarrow$ M0 A0 A0			
(c)	Mean = $\underline{420}$	B1		CAO $\sum x = 6300$
	Sd(n) = 153	B1		AWRT (152.872) $\sum x^2 = 2996550$
	$\mathrm{Sd}(n-1) = \underline{158}$		2	AWRT (158.238)
Note	1 If, and only if, B0 B0 scored, then award M1 for seen att	empt at (6	5200 to 6400)÷15
		Total	7	

Q	Solution	Marks	Total	Comments
3(a)	Accept the equivalent percentage answers with %-sign in			
(i)	$P(A_{41-65}) = \frac{176/500}{176/500} = \frac{88}{250} = \frac{44}{125} = 0.352$	B1	(1)	CAO; any one of four listed answers
(ii)	$P(A_{\geq 66} \cap B_2) = \frac{68/500 = 34/250 = 17/125 = 0.136}{68/500 = 34/250 = 17/125 = 0.136}$	B1	(1)	CAO; any one of four listed answers
(iii)	$P(A_{19-40} \cap B_{\leq 1}) = \frac{17+62}{500} = \frac{79}{500}$	M1		Numerator CAO
(iv)	$= \underline{0.158}$	A1	(2)	САО
(1V)	$\frac{P(A_{\geq 41} B_2) =}{\frac{(35+68)/500}{130/500}} \text{ or } \frac{(130-5-22)/500}{130/500} \text{ or } \frac{103}{130}$	M1		Fraction CAO
	= <u>0.792</u>	A1	(2)	AWRT (0.79231)
(v)	$P(B_{\geq 2} A_{\leq 65}) = \frac{5 + (0) + 22 + 3 + 35 + 31}{80 + 104 + 176} \text{ or } \frac{96}{360}$	M1 M1		Numerator CAO $(130 - 68 + 40 - 6)$ Denominator CAO $(500 - 140)$ (Accept numerator and denominator each \div 500)
	$\frac{48}{180} \text{ or } \frac{24}{90} \text{ or } \frac{12}{45} \text{ or } \frac{4}{15} = \underline{0.267}$	(M2) A1	(3)	CAO (3 dp only) (0.26667)
			9	
(b)	$P(A_{41-65} \cap B_{>0}) = \frac{82+35+31}{500} \text{ or } \frac{176-28}{500} \text{ or } \frac{148}{500} \qquad (p_1)$	B1		CAO; OE $\left(\frac{74}{250}, \frac{37}{125}, 0.296\right)$ Seen anywhere, even in an incorrect expression
	$\frac{P(A_{\geq 66} \cap B_{1 \text{ or } 2}) =}{\frac{53+68}{500} \text{ or } \frac{140-13-6}{500} \text{ or } \frac{121}{500}} (p_2)$	B1		CAO; OE (0.242) Seen anywhere, even in an incorrect expression
	Prob = $(p_1)^2 \times (p_2)^2$ or $(p_1 \times p_2)^2$	M1		Providing $0 < p_1, p_2 < 1$ Must be equivalent to product of two squared probabilities with no extra terms
	$\times \begin{pmatrix} 4\\2 \end{pmatrix}$ or 6	m1		
	$= \underline{0.0308}$	A1	5	CAO (3 sf only) (0.03078686)
SCs	1 Answer of 0.00513 (AWRT) even without working \Rightarrow 2 Answer of 0.0716 (AWRT) even without working \Rightarrow 3 In each of the following (incorrect) expressions, ($\otimes \Rightarrow \times$	B1 B1 M0 1 or +)	mo A0	
	Ignore order of terms and/or value of <i>n</i> providing <i>n</i> is an $\left(\frac{148}{500} \otimes p_3 \otimes \frac{121}{500} \otimes p_4\right) \times n \implies B1 B1 \text{ and } \left(\frac{148}{500} \otimes p_4\right)$			$p_3 \otimes p_4 \otimes \frac{121}{500} \otimes p_5 \bigg) \times n \Rightarrow B1$
	4 Use of divisors of 504, 503, 502, and 501 \Rightarrow max of M1 m1 but much more likely to be M0 mo 5 A final answer of 3.08×10^{-2} does score A1			
		Total	14	

Q	Solution	Marks	Total	Comments
4(a)	Accept the equivalent percentage answers with %-sign (s	ee GN5)		
(i)	$P(X < 1540) = P\left(Z < \frac{1540 - 1525}{9.6}\right)$	M1		Standardising 1540 with 1525 and 9.6 but allow (1525 – 1540)
	= P(Z < 1.56(25)) = 0.94 to 0.942	A1	(2)	AWFW (0.94091)
(ii)	P(X > 1535) =			Area change; can be implied by
	P(Z > 1.04(17) = 1 - P(Z < 1.04)	M1		any final answer < 0.5
(iii)	= 1 - 0.85122 = 0.148 to 0.15	A1	(2)	AWFW (0.14878)
(11)	P(1515 < X < 1540) = P(-1.04 < Z < 1.56) = 0.94091 - (1 - 0.85122)			
	= <u>0.79 to 0.793</u>	B2	(2)	AWFW (0.79213)
(iv)	$P(X \neq 1500) = 1$ or one or unity or 100%	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)
			7	
	Part (a)	Total	7	

Q	Solution	Marks	Total	Comments	
4	Continued	IVIUI INS	I Otal		
	Part (a)	Total	7		
(b)	Each pack contains a random sample of bottles or	B1	,	Must contain at least the 3 emboldened words and clearly infer that 'bottles in a pack are a	
	Packs contain random samples of bottles		(1)	random sample' This mark can be scored anywhere in (c)	
Note	1 "Samples (of bottles) are random" (OE) or "Each bottle is	randomlys	· · ·	-	
	 2 "Packs are selected at random" (OE) or "Each pack is sele 3 "Packs/bottles are selected independently" (OE) or "Packs 	ected at rand	lom" (OE)	\Rightarrow B0 (Stated in question!)	
(i)	$p = P(bottle > 505) = P\left(Z > \frac{505 - 508.5}{3.5}\right) =$				
	P(Z > -1) = P(Z < 1) = 0.84	B1		AWRT (0.84134) Can be implied by a correct answer	
	$P(6 \text{ bottles} > 505) = p^6$	M1		Providing 0	
	= 0.35 to 0.356	A1	(3)	AWFW (0.35469)	
Notes	1 Calculation of $(1 - 0.84134) = 0.15866 \implies B0$ 2 Calculation of $(1 - 0.84134)^6 \implies B0 M1 A0$	L			
(ii)					
	$V(\overline{B}) = \frac{3.5^2}{6}$ or $\frac{12.25}{6}$ or $\frac{2.04}{6}$			CAO/AWRT (2.04167)	
	or	B1		Can be implied by what follows	
	$\mathbf{Sd}(\overline{B}) = \frac{3.5}{\sqrt{6}}$ or <u>1.43</u>			CAO/AWRT (1.42887)	
	$P(\overline{B} > 505) = P\left(Z > \frac{505 - 508.5}{3.5/\sqrt{6}}\right)$	M1		Standardising 505 with 508.5 and $3.5/\sqrt{6}$ (OE); allow (508.5 – 505)	
	$= P(Z > -\sqrt{6}) = P(Z > -2.45) = 0.99 \text{ to } 0.995$	A1	(3)	AWFW (0.99285)	
Notes	7 1 Do not give BOD for unclear/dubious/questionable identifications of (i) & (ii) 2 If answers to (i) & (ii) are not identified, then mark as (i) followed by (ii)				
	3 If answers to (i) & (ii) are switched, then the only mark available is the B1 for stating the 'necessary assumption' 4 In (ii), award of B0 \Rightarrow 0/3 marks 1 U = 6 V + 1 + 1 + (ii)				
SC	1 Use of distribution of total in (ii): B1 for Sd = $3.5\sqrt{6}$ (OE); M1 for P(Z > $(3030 - 3051)/(3.5\sqrt{6})$) or P(Z > $-\sqrt{6}$) or P(Z > -2.45) A1 for 0.99 to 0.995 (AWFW); award of B0 \Rightarrow 0/3 marks				
		Total	14		

Q	Solution	Marks	Total	Comments
5(a)	Accept 3 dp rounding of probabilities from tables	Accept t	he equivale	ent percentage answers with %-sign (see GN5)
(i)	$P(\text{Red} = 4) = {\binom{50}{4}} (0.12)^4 (0.88)^{46}$ = 230300 × 0.00020736 × 0.002793849	M1		
	= 0.133 to 0.134	A1	2	AWFW (0.13342)
(ii)	P(Orange ≤ 12) = <u>0.814</u>	B1	1	AWRT (0.8139)
(iii)	P(20 < Pink < 30) =			
	0.9765 or 0.9844 (<i>p</i> ₁)	M1		
	MINUS			
	0.2862 or 0.1974 (<i>p</i> ₂)	M1		
	= <u>0.69 to 0.691</u>	A1	3	AWFW (0.6903)
Notes	1 For calculation of individual terms or no method: award B3 for 0.69 to 0.691 (AWFW); B2 for 0.778 to 0.78 (AWFW); B2 for 0.787 to 0.789 (AWFW); B2 for 0.697 to 0.699 (AWFW) 2 $(1-p_2) - (1-p_1) \Rightarrow M1 M1 A1$ or M1 M1 or M1			
(b) (i)	$P(Black = 0) = (1 - 0.075)^{50} = (0.925)^{50}$	M1		Can be implied by a correct answer
	= <u>0.02</u>	A1	2	AWRT (0.02028)
(ii)	$p_{(\text{Red or Yellow})} = p_{(\text{Black or Purple})} = 0.35$	B1		CAO; stated or identified by any one of the probabilities in MS solution
	P(Either < 20) = 0.7264 or 0.8138	M1		
	$P(Both < 20) = 0.7264^2 = 0.527 \text{ to } 0.528$	A1	3	AWFW (0.5277)
Note	1 For calculation of individual terms or no method: award B1 for 0.35 (CAO) stated	B3 for 0.5		(AWFW); B2 for 0.662 to 0.663 (AWFW);
		Total	11	

Q	Solution	Marks	Total	Comments
6 (a)	99% (0.99) $\Rightarrow z = 2.57$ to 2.58	B1		AWFW (2.5758)
	CI for μ is $317.5 \pm \begin{pmatrix} 2.57 \text{ to } 2.58 \\ 2.32 \text{ to } 2.33 \\ 2.70 \text{ to } 2.71 \\ 2.42 \text{ to } 2.43 \end{pmatrix} \times \frac{(146.3 \text{ or } 148.1 \text{ to } 148.2)}{\sqrt{40 \text{ or } 39}}$	M2,1 (-1 ee)		Ignore any notation M0 if CI is not of the form: $317.5 \pm (z \operatorname{or} t) \times ((s \operatorname{or} s^2)/\sqrt{40 \operatorname{or} 39})$ Allow any combination in last term NB: $146.3 \times \sqrt{40/39} = 148.16377$
	Hence $317.50 \pm (58.50 \text{ to } 60.50)$ or (257.00 to 259.00, 376.00 to 378.00)	Adep1	4	CAO/AWFW; 1 or 2 dp only Dependent on award of M2 AWFW; 1 or 2 dp only
Notes	1 If award of M0 is followed by a numerically correct CI = 2 Use same rules as above for $t = 2.7$ to 2.71 (AWFW) \Rightarrow			.00) or (254.50 to 255.50, 379.50 to 380.50)
(b) (i)		B1*		AWFW (£333.33) * This mark may be scored in (b)(ii) * CAO/AWFW (2 dp not required) AWFW (2 dp not required)
	Clear correct comparison of (333 to 334) with CI in (a) {eg 333.33 is within CI in (a)} or (Must be clear that comparing like with like) Clear correct comparison of (400) with CI in (b)(i) {eg 400 is within CI in (b)(i)}	BF1		Statement must include reference to 333 to 334 F on CI providing it is includes 333 to 334 Must have found an interval in (a) but quoting values for CI or CLs is not required Statement must include reference to 400 F on CI providing it is includes 400 Must have found an interval in (b)(i) but quoting values for CI or CLs is not required
	Agree with or accept claim Claim is (likely to be) true/correct/right/valid/accurate	Bdep1	(3)	OE; dependent on BF1
Notes				
(ii)	€200 equates to (£) <u>166 to 167</u> Per cent < €200/£166.67 $\frac{7 \text{ or 8}}{40} \times 100 = \underline{17.5 \text{ or } 20}$ seen with <u>25</u> or <u>7 or 8</u> seen with <u>10</u> or (€) <u>200</u> seen with (€) <u>225</u> or (£) <u>166 to 167</u> seen with (£) <u>187.5(0)</u>	B1		AWFW $(\pounds 166.67)$ * Award B1 if 1 st B1 not scored in (b)(i) * Can be implied by 17.5 or 20 (OE) or 7 or 8Requires both correct numbers (OE) from any of these pairseg 17.5 & 25, 0.2 & 0.25, 8 & 10 \Rightarrow B1 7 & 25 only \Rightarrow B0
	Agree with or accept claim Claim is (likely to be) true/correct/right/valid/accurate	Bdep1	(2)	OE; dependent on B1
			5	
		Total	9	