

A-level ENVIRONMENTAL SCIENCE 7447/1

Paper 1

Mark scheme

June 2020

Version: 1.0 Final Mark Scheme

206A7447/1/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2020 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Qu	Part	Marking guidance		nce		Comments		Total marks	AO
01	Gas		Mean residence	Human act that increa atmosphe	ases eric	Global warming potential	Method to reduce atmospheric	5	AO1 1a
			time / yrs	concentrat of greenh gas		/ relative to CO ₂	concentrations of greenhouse gas		
	Metha	ane/CH4							
							Named substitution materials/ actions/correct disposal methods /Ban use		
	N₂O/r oxi	nitrous ide							
	[A] N(Эх							
						1			
		ospheric) one							

Qu	Part	Marking guidance	Comments	Total marks	AO
02	1	0.43 mm yr ⁻¹ A 0.40 – 0.43	24 % of 1.8 mm = 0.432 = 0.43 mm yr ⁻¹	1	AO2
02	2	One mark for volume of ice 11.5 x 10 ⁶ km ³	Total volume of ice (0.5 +3 + 8) x 10 ⁶ km ³ = 11.5 x 10 ⁶ km ³	1	AO2
		One mark for sea level rise 29 m	<u>11.5 x 10⁶</u> 395 = 0.0291139 x 10 ⁶ mm = 29m	1	AO2
02	3	Any one from • thermal expansion of seawater • decrease in land water storage	1	AO1b	
02	4	 Any one named remote sensing sy Lidar scanners Gravity recovery and climate exp Satellite altimetry Other named suitable example 	1	AO2	

Qu	Part	Marking guidance	Comments	Total marks	AO
03	1	One mark for difference in energy needed 2000 GJ A answers based on 580 - 600 and 180 - 190 One mark for difference in CO ₂	0.5% ore grade : 580 x 5 = 2900 GJ 2% ore grade : 180 x 5 = 900 GJ Difference = 2000 GJ <u>2000</u> = 47.62 42	2	AO2
		emitted: 133 tonnes of CO ₂ A correct calculation based on answer for first part	47.62 x 2.8 = 133.3		
03	2	One mark for technique		1	AO1a
		One mark for how it works Direct detection Geiger counter detects beta particles/gamma ray Scintillation counters measures ionising radiation Trial drilling produces rock samples for confir concentration Remote sensing using satellites/ae Magnetometry variations in magnetic fields Gravimetry variations in gravitational fields (Gamma ray) Spectroscopy radiation detected used to identif Seismic surveys reflected sound waves give infor	mation of ore presence/ rial surveys	1	AO1b
		 reflected sound waves give information about the depth, density, and shape of deposit Other correct technique and how it works 			

03	3	Any two from	2	AO1b
		 Use of radiation absorbing materialset dose limits/dosemeters/photographic film maximum time for exposure dust suppression/ventilation/monitoring of air/dust/surfaces remote handling of material (tailings/ore) minimum distance from source/inverse square law clothing/respiratory protection use of radioactive detection equipment decontamination procedures other correct method 		

03	4	Indicative conter	nt		9	AO1=4
		Named	Description of	Reduced environmental		AO1 1a
		example	technology	impacts		=2
		Bioleaching	Micro-organisms	Less energy intensive/		AO1 1b
			such as bacteria and	less emissions than		=2
			fungi that produce	smelting. Reduced		
			acids to dissolve	global warming/acid		AO2=3
			metals.	rain. Reduced acid		
			Metals extracted from	seepage. Bacterial		AO3=2
			solution using carbon	population reused and		AO3
			filters/electrolysis	recycled		1c=2
		Phytomining	Plants absorb metals	Less energy intensive/		
			from soil or water and	Less emissions than		
			concentrated in	smelting. Reduced		
			leaves. Plants then	global warming/acid		
			harvested, burned	rain. Decontaminates		
			and metals extracted	polluted ground		
			from ash by			
			dissolving in acids,			
			electrolysis, or iron			
			displacement			
		Leachate	Draining leachate	Use of waste spoil		
		collection	recirculated through	heaps. Reduces		
			spoil heaps increases	problem of leachate		
			concentration of	drainage, eg into water		
			metal ions in solution	ways		
		Iron	Copper extracted	Less energy intensive		
		displacement	from copper sulphate	/less emissions than		
			solution by	smelting. Reduced		
			displacement by	energy needed for		
		Dehma	scrap iron	recycling scrap metal		
		Polymer	Metal ions adsorbed	Use of aquaculture		
		adsorption	onto polymer surface.	waste. Adsorbent fibres		
			Natural polymers	reusable. Less		
			used, eg shells &	equipment needed re		
			shrimp chitin	mining – less emissions		

			1 1
	eg uranium	 low energy method of obtaining U – reduced emissions used alongside desalination plants as U concentrated in brine discharge 	
		 less radioactive waste/impact on the environment compared to land based deposits, eg no leachate from tailings, no potential groundwater contamination faster method 	
Phosphate mining (uranium)	U a by-product. Separated from phosphate deposits	Less energy intensive	
Extraction from coal ash (uranium)		Less ash to landfill	

Examiners are reminded that AO1, AO2 and AO3 are regarded as interdependent. When deciding on a mark all should be considered together using the best fit approach. In doing so, examiners should bear in mind the relative weightings of the assessment objectives. More weight should therefore be given to AO1 than AO2 and AO3.

Level	Marks	Descriptor
3	7–9	A comprehensive response to the question, with the focus sustained. A conclusion is presented in a logical and coherent way, fully supported by relevant judgements. A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues. Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.
2	4–6	A response to the question which is focussed in parts but lacking appropriate depth. A conclusion may be present, supported by some judgements, but it is likely not all will be relevant. A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success. Environmental terminology is used, but not always consistently.
1	1–3	A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated. A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant. A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental

	errors and/or omissions. The answer may attempt to identify relationship between environmental issues, but is rarely successful. Limited environmental terminology is used, and a lack of understanding is evident.
0	Nothing written worthy of credit.

Qu	Part	Marking guidance	Comments	Total marks	AO
04	1	88%	77 - 9.5= 67.5 <u>67.5</u> x 100 = 87.7% 77	1	AO2
04	2	Any two marks from • noise monitoring stations • systematically located OR • transects of suitable length • transects radiating from runway points of compass Any one mark from Number of sample sites/monitoring • 10 or more sampling sites • suitable intervals - 1 km One mark from Equipment • calibrated/standardised sound let Any two marks from Timing • data collection related to flight so Reliability • repeat max level readings to obt • avoidance of other noise source • avoidance of structures affecting • same wind direction	g stations evel meters chedules ain mean s	Max 4	AO2 PS=4
04	3	Any two named design changes Any two linked explanations how of emissions eg • high bypass - ratio engines/engine • smooth mixing of exhaust gases OR • improved brakes • reduced use of reverse thrusters OR • more aerodynamic surfaces/bler undercarriage/wing flaps • less turbulence/vibration/thrust/p OR • engine acoustic liners • absorbs/dissipates engine noise	ne hush kits/chevron nozzles and surrounding air anded wing aircraft/fairings – bower needed	2 2	AO1 1b

04	4	Any one from	1	AO1
		change flight paths to avoid urban areas		1a
		 lower altitude flights restricted over urban areas steeper take-off angle for rapid ascent to a higher altitude constant descent angle reduces periods of high engine thrust restricted flight times, eg to reduce noise exposure at night noisy aircraft banned/charged fines for exceeding noise limits/restrictions quota count system to encourage use of quieter aircraft other correct operational change 		KIN

Qu	Part	Marking guidance	Comments	Total marks	AO
05	1	(No power output as wind speed) n blades/overcome inertia/overcome		1	AO2
05	2	2.5 : 1Figures from graph: 3000 and 1200		1	AO3
		[A] 5 : 2 , 1:04 and other	<u>3000</u> and <u>1200</u> = 2.5 : 1 1200 1200		
05	3	Any three from: • rotor blades positioned at same height • length of time same for each wind speed tested • same number of measurements at each wind speed • same temperature/air density • same (range of) wind velocities • same precipitation			AO2
05	4	Advantages of off-shore compared Up to three from Greater distance from populated ar • reduced noise pollution • reduced visual pollution • reduced land use conflicts eg not close to urban areas, no eg National Park • correct data from map Up to three from Generate more electricity per annu • higher average wind speeds • greater numbers • larger sized turbines • greater height allows access to h • greater blade diameter • correct use of data from table	reas leading to ot near areas of high scenic value m due to	Max 5	AO3 1c

Qu	Part	Marking guidance	Comments	Total marks	AO
06	1	В		1	AO2
06	2	Any two from • removes unreliability/intermittend • energy can be stored/peak shav • more useful chemical energy/mo • higher energy density	-	2	AO2
06	3	One mark for 2.2 and 4.8 One mark for difference 2.6° C min ⁻¹ A answers based on 100 - 77 = 23	Cylinder A 100 - 78 = 22 $22/10 = 2.2^{\circ}$ C min ⁻¹ Cylinder C 100 - 52 = 48 $48/10 = 4.8^{\circ}$ C min ⁻¹ $4.8 - 2.2 = 2.6^{\circ}$ C min ⁻¹	2	AO3 1b
06	4	30 kJ	Cylinder C = 100 cm^3 After 60 min – temp drop = 72° C Total energy lost: $4200 \times 0.1 \times 72 = 30240 \text{ J}$ 30 kJ	1	AO3 1b
06	5	Any two named environmental conditions eg temperature air flow humidity sources of heat gain/loss		2	AO2
06	6	 use container with the lowest SA:vol ratio/minimise SA:vol ratio/lowest rate of heat loss less of the volume in contact with the outer surface 		2	AO3 1c

Qu	Part	Marking guidance	Comments	Total marks	AO
07	1	 Any three from: systematic/random sampling/grid area and sample from each square/W sampling multiple samples (at each sampling location) from same depth same volume/use of soil auger/same mass timing to allow for fluctuations/change/named factor that may cause change named storage method to prevent water gain/loss other correct answer 		3	AO3 1c PS=3
07	2	Any two from: • dry known volume of soil • weight/mass of dry soil • divided by volume		2	AO1 PS=2

Qu Part	Marking guidance	Comments	Total marks	AO
08 1	 Two marks max for describing location of samples either random or systematic One mark reference to number of samples to be taken Location of sample random sampling set up a gridded area and use random numbers: as coordinates and choose the tree on/closest to that coordinate to number each tree (within the plot area) and use the random numbers to select trees OR systematic sampling set up a gridded area and sample tree at the same chosen interval, eg every 5th square along Number of samples (same) large number of trees sampled in each plantation 		3	AO2

08	2	AGC at 30 years • 95.83 40 years • 90.74	230 x 50/100 x 5/6 225 x 50/100 x 4.17/5.17 Credit each equation above if answer not worked through	1	AO3 1a
		Change • -5.1 t ha ⁻¹ ecf	95.83 – 90.74	1	

08	3	 One mark for: harvest at 30 years Any one from: max biomass/little/no further increase in biomass after 30 years decrease in AGC after 30 years as ratio drops to 4.17 after 30 years less C stored above ground after 30 years 	2	AO3 1b 1c
08	4	 if kept as wood, eg furniture/construction/ preserved wood = carbon stored 	2	AO2
		 if used as a fuel/used where it will rot = carbon released to atmosphere 		

Qu	Part	Marking guidance	Comments	Total marks	AO
09	1	D		1	AO3 1a
09	2	 Any three from the following: large sample size/high frequency of collection random locations (for collection of samples) samples from, eg different regions/parts of the UK/imported large range of food items (tested) large range of food large range of outlets other correct answer 	Allow suitable description, eg from a range of different suppliers, eg supermarkets, wholesalers	3	AO2
09	3	Systemic pesticides will be retained within the food	Allow converse for contact pesticides	1	AO2
09	4	 Different amounts of pesticides applied because types of pest may vary seasonal changes/species life cycles affect abundance (requiring different application rates) different methods/timing of application affect concentrations numbers of predators vary (requiring different application rates) Variation after application rainfall time before harvest increase in mass causes dilution storage/treatment method 		4	AO2
09	5	 Any three from: Advantages does not remain in the environment for a long period of time/low persistence (as it) degrades quickly 		3	AO11b

 not liposoluble/do not bioaccumulate/ biomagnify high specificity/high insect toxicity/low mammal toxicity /fewer non-target species are killed insoluble in water/low mobility 	
 insoluble in water/low mobility not carcinogenic other correct answers 	

09	6	Any three from:	3	AO1b
		Loss of one species affects others by:		
		 loss of potential food source/decrease in the populations of other 		
		inter-dependent species		
		 loss of an ecosystem service, eg less pollination/seed dispersal 		
		 some species become more abundant as 		
		competing/predator species		
		have been killedremoval of habitat		

Qu	Part	Marking guidance	Comments	Total marks	AO
10	1	 Water deficit in 1 year 600 x 10⁶ m³ 	(-700 + 100) x 10 ⁶ m ³ Credit equation above if answer not worked through	1	AO3 1a 1b
		Water level drop in 10 years8.6 m	0.857 m drop in 1 year, 8.57m in 10 years	1	
		OR	or		
		 Water deficit in 10 years 6000 x 10⁶ m³ 	(-7000 +1000) x 10 ⁶ m ³ Credit equation above if answer not worked through	1	
		Water level drop in 10 years • 8.6 m A. 8.57, 9	-6000/-7000 x 10m or 10 – (1000/7000 x 10) / 10 – 1.4285	1	
10	2	Any one from the following: • named change in weather patterns, eg increased		1	AO2

temperatures could increase rate of evaporation (of surface

 named change in demand of water from human activities, eg

water for irrigating crops

water)

	-	I	1		1
10	3	One mark for named method of desalination		2	AO1 1a
		One mark for how method works			
		eg reverse osmosis			
		water filtered at very high pressure through partially/selectively permeable membranes/tubes			
		OR			
		Distillation			
		salt water boiled/evaporated (by heating or reduced pressure) and steam produced condensed			
		OR			
		multi-stage (MSF) flash distillation/flash distillation			
		vaporisation of water sea water due to reduced pressures and steam produced condensed			

10	4	Two marks for choice of	5	AO1 1b =2
		 equipment and description of method: Secchi disc/turbidity bottle/turbidity tube with light and dark segments/cross/degrees of shading measure the depth when segments/cross disappear/density of cross hatching obscured 		1D =2
		OR		AO2 = 3
		 light source and light meter/turbidimeter/nephelomet er/colourimeter measurement of transmission/scatter/reflection 		5
		 Up to three marks for description of standardisation of method same volume of water tested/collected same container/dimensions/depth of container used 		
		 For turbidity meter same light source/light intensity /levels/wattage same distance of light source to water container 		
		calibrate light meter		
		 repeats for reliable mean 		
		 repeat turbidity test over time/named time interval (to detect changes) 		

4 A comprehensive response with a clear and sustained focus. Content is accurate and detailed. Relationships are identified, reflecting the holistic nature of environmental science and the answer as a whole is coherent. A wide range of relevant natural processes/systems and environmental issues are described and articulated clearly. These are applied systematically to the question, with clear relevance to the context. Where conclusions are made, these are fully supported by judgements and presented in a logical and coherent way. Relevant environmental terminology is used consistently and accurately throughout. If there are errors, these are very minor indeed and not sufficient to detract from the answer. 4 16–20 A response in which the focus is largely sustained, with content that is mainly accurate and detailed. Relationships are identified and the answer is largely coherent. A range of natural processes/systems and environmental issues are described and articulated clearly. In most cases, these are applied appropriately to the question but in some, it is less clear why they are relevant. Where conclusions are made, these are supported by judgements which are mostly coherent and relevant. Relevant environmental terminology is used consistently and throughout, with no more than minor errors. 3 11–15 A partial response which is focused in parts. The content is mostly accurate but not always detailed. There is an attempt at identifying relationships, but the answer is not coherent. A range of natural processes/systems and environmental issues are described, most are articulated clearly. In some cases, these are applied appropriately to the context but, in most, it is less clear why they are relevant. Where conclusions are made, it is not always clear how they relate to the judgments given and are liklely to contain errors. Relevant envi	Level	Marks	Descriptors
4 16-20 accurate and detailed. Relationships are identified and the answer is largely coherent. A range of natural processes/systems and environmental issues are described and articulated clearly. In most cases, these are applied appropriately to the question but in some, it is less clear why they are relevant. Where conclusions are made, these are supported by judgements which are mostly coherent and relevant. Relevant environmental terminology is used consistently and throughout, with no more than minor errors. 3 11-15 A partial response which is focused in parts. The content is mostly accurate but not always detailed. There is an attempt at identifying relationships, but the answer as a whole is not fully coherent. A range of natural processes/systems and environmental issues are described, most are articulated clearly. In some cases, these are applied appropriately to the context but, in most, it is less clear why they are relevant. Where conclusions are made, it is not always clear how they relate to the judgments given and are likely to contain errors. Relevant environmental terminology is used, but not consistently and there may be errors. 2 6-10 An unbalanced response, lacking in focus. The content may be inaccurate and lacking detail. There is some attempt at identifying relationships, but the answer is not coherent. A limited arage of natural processes/systems and environmental issues are described but not articulated clearly and likely to contain errors and/or omissions. There is a limited attempt to apply them to the context. Any conclusions are likely to be asserted, with no supporting judgements and fundamental errors. Environmental terminology is used, but not always appropriately and sometimes with clear errors. 1 1–5 Fragmented points, whose rele	5	21–25	 and detailed. Relationships are identified, reflecting the holistic nature of environmental science and the answer as a whole is coherent. A wide range of relevant natural processes/systems and environmental issues are described and articulated clearly. These are applied systematically to the question, with clear relevance to the context. Where conclusions are made, these are fully supported by judgements and presented in a logical and coherent way. Relevant environmental terminology is used consistently and accurately throughout. If there are errors, these are very minor indeed and not sufficient to detract from the
3 11–15 always detailed. There is an attempt at identifying relationships, but the answer as a whole is not fully coherent. A range of natural processes/systems and environmental issues are described, most are articulated clearly. In some cases, these are applied appropriately to the context but, in most, it is less clear why they are relevant. Where conclusions are made, it is not always clear how they relate to the judgments given and are likely to contain errors. Relevant environmental terminology is used, but not consistently and there may be errors. 2 6–10 An unbalanced response, lacking in focus. The content may be inaccurate and lacking detail. There is some attempt at identifying relationships, but the answer is not coherent. A limited range of natural processes/systems and environmental issues are described but not articulated clearly and likely to contain errors and/or omissions. There is a limited attempt to apply them to the context. Any conclusions are likely to be asserted, with no supporting judgements and fundamental errors. Environmental terminology is used, but not always appropriately and sometimes with clear errors. 1 1–5 Fragmented points, whose relevance to the question and relationships to each other are unclear. A few natural processes/systems and environmental issues are listed, but unlikely to be described and many may be irrelevant. There is no clear attempt to apply them to the context. It is unlikely that a conclusion will be present.	4	16–20	accurate and detailed. Relationships are identified and the answer is largely coherent. A range of natural processes/systems and environmental issues are described and articulated clearly. In most cases, these are applied appropriately to the question but, in some, it is less clear why they are relevant. Where conclusions are made, these are supported by judgements which are mostly coherent and relevant. Relevant environmental terminology is used consistently and throughout, with no
2 6-10 Iacking detail. There is some attempt at identifying relationships, but the answer is not coherent. A limited range of natural processes/systems and environmental issues are described but not articulated clearly and likely to contain errors and/or omissions. There is a limited attempt to apply them to the context. Any conclusions are likely to be asserted, with no supporting judgements and fundamental errors. Environmental terminology is used, but not always appropriately and sometimes with clear errors. 1 1–5 1 1–5 1 1–5 1 1–5 1 1–5 1 1–5 1 1–5	3	11–15	always detailed. There is an attempt at identifying relationships, but the answer as a whole is not fully coherent. A range of natural processes/systems and environmental issues are described, most are articulated clearly. In some cases, these are applied appropriately to the context but, in most, it is less clear why they are relevant. Where conclusions are made, it is not always clear how they relate to the judgments given and are likely to contain errors. Relevant environmental terminology is used, but not consistently and there may be
Image: 1Fragmented points, whose relevance to the question and relationships to each other are unclear. A few natural processes/systems and environmental issues are listed, but unlikely to be described and many may be irrelevant. There is no clear attempt to apply them to the context. It is unlikely that a conclusion will be present.	2	6–10	An unbalanced response, lacking in focus. The content may be inaccurate and lacking detail. There is some attempt at identifying relationships, but the answer is not coherent. A limited range of natural processes/systems and environmental issues are described but not articulated clearly and likely to contain errors and/or omissions. There is a limited attempt to apply them to the context. Any conclusions are likely to be asserted, with no supporting judgements and fundamental errors. Environmental terminology is used, but not always appropriately and sometimes
0 Nothing written worthy of credit	1		 Fragmented points, whose relevance to the question and relationships to each other are unclear. A few natural processes/systems and environmental issues are listed, but unlikely to be described and many may be irrelevant. There is no clear attempt to apply them to the context. It is unlikely that a conclusion will be present. There is an attempt to use environmental terminology, but seldom appropriately.

Qu	Part	Ма	rking guidance		Comments	Total marks	AO
Qu 11	Part 11.1	AOs: AO1 = 10	AO2 = 10 AO3 = 5				
pollut	tion but	problems s		ehicles o	vements at local and regiona n the road, globally, countrie ries, eg China		
	c areas		Technological improve	-	Details of impact reducti (local, regional and globa scales)		Spec ref
Incon comb	nplete oustion o		Diesel particulate filters CMA road surfaces (Lor	. ,	Trap smoke particles. Red particulates in cities Particulates stick to surfac not resuspended		8.4.3.2.1
alese waste	el, wood e	, crop	Electrostatic precipitator coal fired power stations		Fly ash collected – reduce regional particulate pollutio		
			Cyclone separators Bag filters Scrubbers		Suspended particles collec chamber Suspended particles wash		
			Smokeless coal		Tar removed Reduced regional impacts		
			More efficient combustic technology in diesel eng		Reduced respiratory disea Reduced albedo of atmosp Reduced smoke smogs du temperature inversions	ohere	
Photochemical smogs SOx: sulfurous and sulfuric acids • NOx: nitric acid • ozone involved in production of secondary pollutants.		us and acid ved in f	Catalytic converters Vapour collection at petr stations	rol	Reduced damage to non-li objects: damage to limesto buildings, metal structures • Living organisms • Direct effects of acids • Damage to proteins • Damage to exoskeletons • Respiratory effects in hur	one 3	3.4.3.2.3 3.4.3.2.4
					Reduction of NOx and oxic of hydrocarbons Reduced regional impacts	lation	
Acid	rain		Desulfurisation of fossil FGD, Dry FGD, Wet FG Control of NOx – low ter combustion, catalytic converters, urea sprays	iD mp	Reduced acidification of so water bodies, mobilising of heavy metals. Reduced im on biodiversity Transboundary pollutant	:	3.4.3.2.2
Tropo	ospherio	c ozone	Catalytic converters		Reduced impacts on healt Local impacts	h 3	3.4.3.2.4
Carbo	on mon	oxide	Catalytic converters		Reduced health impacts	3	.4.3.2.5

Qu	Part	AOs:
11	11.2	AO1 = 10 AO2 = 10 AO3 = 5

Topic areas	Soil management strategies	Details/impact reduction (local, regional and global scales)	Spec ref
How human activities affect soil fertility	 Activities that control soil conditions and affect fertility: aeration of soil by ploughing and drainage addition of soil nutrients irrigation soil compaction, increasing bulk density pH control 		3.2.5.1
Causes of soil degradation and erosion	 Human activities that cause soil erosion and degradation: ploughing vulnerable soils vegetation removal overgrazing reducing soil organic matter reducing soil biota cultivating steep slopes soil compaction by machinery or trampling 		3.2.5.2
	 The environmental impacts of soil erosion: reduced productivity sedimentation in rivers and reservoirs downstream flooding coastal sedimentation increased atmospheric particulates desertification landslides 		
Soil management strategies to increase sustainability	Methods that can be used to reduce soil erosion: Iong-term crops contour ploughing tied ridging terracing windbreaks multicropping strip cropping mulching increasing soil organic matter		3.2.5.3

The carbon cycle including human influences	Sustainable management of the carbon cycle: methods of counteracting human activities that alter the natural equilibria of the carbon cycle	 Carbon sequestration Carbon Capture and Storage (CCS) Matching afforestation to deforestation Increasing soil organic matter Conservation of peat bogs 	3.2.4.2
The nitrogen cycle including human influences	The processes in the nitrogen cycle that are affected by human activities	 The Haber Process fixing nitrogen in ammonia, mainly to produce agricultural fertilisers Land drainage increases nitrogen fixation and reduces denitrification The growth of legume crops increases nitrogen fixation in plant proteins 	3.2.4.3
	Consequences of changes in nitrogen reservoirs: Sustainable management of the nitrogen cycle and methods of counteracting human activities that alter the natural equilibria of the nitrogen cycle	 eutrophication global climate change Methods of counteracting anthropogenic nitrogen movements: use of natural nitrogen fixation processes instead of the Haber process methods of reducing soil nitrate leaching 	
The phosphorus cycle including human influences	The processes in the phosphorus cycle that are affected by human activities Sustainable management of the phosphorus cycle and methods of counteracting human activities that alter the natural equilibria of the phosphorus cycle	 Phosphorus compounds in agricultural fertilisers Eutrophication the use of biological wastes as fertilisers breeding of crops that absorb phosphates more efficiently providing suitable conditions for soil mycorrhizal fungi increases phosphate uptake 	3.2.4.4
The extent to Difficulties in a	ay be developed which these management strategies applying these strategies/reasons for nents being made/that need to be m	have been successful r lack of success	