HALOGENOALKANES (HALOALKANES)

Structure Contain the functional group C-X where X is a halogen (F, C*l*, Br or I)

TypesHalogenoalkanes - halogen is attached to an aliphatic skeleton - alkyl groupHaloarenes- halogen is attached directly to a benzene (aromatic) ring

Classification Classified according to what is attached to the functional group.

NamesBased on the original alkane with a prefix indicating halogens and their position. $CH_3CH_2CH_2Cl$ 1-chloropropane $CH_2ClCHClCH_3$ 1,2-dichloropropane $CH_3CHClCH_3$ 2-chloropropane $CH_3CBr(CH_3)CH_3$ 2-bromo-2-methylpropane

Q.1 Draw and name all the structural isomers of $C_3H_6Br_2$, C_4H_9Cl and $C_5H_{11}Br$.

Q.2 Classify the structural isomers of C_4H_9Cl and $C_5H_{11}Br$ as 1°, 2° or 3°.

Physical properties

Boiling points

boiling point increases with mass

- for isomeric compounds the greater the branching, the lower the boiling point
- halogenoalkanes are soluble in organic solvents but insoluble in water they are not polar enough and don't exhibit hydrogen bonding.

1

NUCLEOPHILIC SUBSTITUTION REACTIONS

F322

- *Theory* halogens have a greater electronegativity than carbon
 - a dipole is induced in the C-X bond and it becomes polar
 - the carbon is thus open to attack by nucleophiles

polarity in a C-Br bond

- Nucleophiles \bullet examples are OH⁻, CN⁻, NH₃ and H₂O
 - possess at least one LONE PAIR of electrons
 - are attracted to the slightly positive (electron deficient) carbon

Basic

- mechanism the nucleophile uses its lone pair to provide the electrons for a new bond
 - as carbon can only have 8 electrons in its outer shell a halide ion is displaced
 - the result is **substitution** following attack by a nucleophile
 - the mechanism is therefore known as NUCLEOPHILIC SUBSTITUTION

• the rate of reaction depends on the strength not the polarity of the C-X bond

Rate of

reaction

C-I 238 k.Imol ⁻¹	least polar	
276 · · · · · · · ·		
C-Br		
C-C <i>l</i> kJmol ⁻¹	Ļ	
C-F	most polar	

WEAKEST BOND EASIEST TO BREAK FASTEST REACTION

Practical investigation

- *investigation* The time taken for a precipitate of silver halide is measured. The faster the precipitate forms, the faster the hydrolysis and the weaker the C-X bond.
 - warm equal amounts of each halogenoalkane in a water bath
 - add a solution of ethanol, water and aqueous silver nitrate to each
 - record the time it takes for a precipitate to appear
 - AgCl whiteAgBr creamAgl yellow(AgF is soluble)

Elimination takes place when ethanol is the solvent - SEE LATER

This reaction (and the one with water) is sometimes known as HYDROLYSIS

 H_2O A similar reaction to that with OH^- takes place with water.
It is slower as water is a poor nucleophile.Equatione.g. $C_2H_5Br(I)$ + $H_2O(I)$ ---> $C_2H_5OH(aq/alc)$ +HBr(aq)Q.3Write equations for the reactions of hot, aqueous NaOH with...
a) $CH_3CH_2CH_2Br$

- b) CH₃CHBrCH₂CH₃
- c) $(CH_3)_3CBr$

Advanced

work

This form of nucleophilic substitution discussed so far is known as S_N2 ; it is a bimolecular process. An alternative method involves the initial breaking of the C-X bond to form a carbocation, or carbonium ion, (a unimolecular process - S_N1 mechanism), which is then attacked by the nucleophile. S_N1 is favoured for tertiary haloalkanes where there is steric hindrance to the attack and a more stable tertiary, 3°, carbocation intermediate is formed.

Synthetic	The reactivity of the C-X bond means that halogenoalkanes play an important par in synthetic organic chemistry. The halogen can be replaced by a variety of groups via a nucleophilic substitution mechanism. During the manufacture of ibuprofen , substitution of a bromine atom takes place			
Monomers	chloroethene $CH_2 = CHCl$	tetrafluor	oethene $CF_2 = CF_2$	
Polymers	poly(chloroethene)PVCpoly(tetrafluoroethene)PTF	$C = -(CH_2 - CHC)$ $E = -(CF_2 - CF_2)$	<i>il</i>) _n — packaging _n — non-stick surfaces	
CFC's	dichlorofluoromethane trichlorofluoromethane	CHFCl ₂ CF ₃ Cl	refrigerant aerosol propellant blowing agent	
	bromochlorodifluoromethane	$CBrClF_2$	fire extinguishers	
		CCl ₂ FCClF ₂	dry cleaning solvent degreasing agent	
	All the above were chosen because of their		w reactivity latility	

F322

USES OF HALOGENOALKANES

• non-toxicity

PROBLEMS WITH CFC's

Ozone layer • CFC's have been blamed for environmental damage by thinning the ozone layer

- Ozone absorbs a lot of harmful UV radiation
- CFC's break up in the atmosphere to form free radicals

 $CF_2Cl_2 \longrightarrow CF_2Cl_{\bullet} + Cl_{\bullet}$

• the free radicals catalyse the breaking up of ozone $2O_3 \longrightarrow 3O_2$

Solution

Δ

- CFC's were designed by chemists to help people
 - chemists now synthesise alternatives to CFC's to protect the environment such as hydrocarbons and HCFC's
 - CO2 can be use as an alternative blowing agent
 - this will allow the reversal of the ozone layer problem