GROUP II ELEMENTS Beryllium to Barium

Introduction Elements in Group I (alkali metals) and Group II (alkaline earths) are known as **s-block elements** because their valence (bonding) electrons are in s orbitals.

	Be	Mg	Ca	Sr	Ba
Atomic Number	4	12	20	38	56
Electronic configuration	1s ² 2s ²	[Ne] 3s ²	[Ar] 4s ²	[Kr] 5s ²	[Xe] 6s ²

PHYSICAL PROPERTIES

Atomic Radius

Increases down each group electrons are in shells further from the nucleus

	Be	Mg	Ca	Sr	Ba
Atomic radius / nm	0.106	0.140	0.174	0.191	0.198

Ionic Size Increases down the group

The size of positive ions is less than the original atom because the nuclear charge exceeds the electronic charge.

	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
Ionic radius / nm	0.030	0.064	0.094	0.110	0.134

Melting PointsDecrease down each groupmetallic bonding gets weaker due to increased sizeEach atom contributes two electrons to the delocalised cloud. Melting points tend
not to give a decent trend as different crystalline structures affect the melting point.

	Be	Mg	Ca	Sr	Ba
Melting point / °C	1283	650	850	770	710

Ionisation Energy **Decreases down the group** atomic size increases

Values are low because the electron has just gone into a new level and is shielded by filled inner levels. This makes them reactive.

	Be	Mg	Ca	Sr	Ba
lst I.E. / kJ mol ⁻¹	899	738	590	550	500
2nd I.E. / kJ mol ⁻¹	1800	1500	1100	1100	100
3rd I.E. / kJ mol ⁻¹	14849	7733	4912		

There is a large increase for the 3rd I.E. as the electron is now being removed from a shell nearer the nucleus and there is less shielding.

Electronegativity Decreases down the group

Increased shielding makes the shared pair less strongly attracted to the nucleus

AS1

	Be	Mg	Ca	Sr	Ba
Electronegativity (Pauling)	1.5	1.2	1.0	0.95	0.89

Hydration Enthalpy Decreases (gets less negative) down each group

react with increasing vigour down the group

Charge density of the ions decreases thus reducing the attraction for water

	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
Hydration Enthalpy / kJ mol ⁻¹		-1891	-1562	-1413	-1273

CHEMICAL PROPERTIES

read with moreasing vigour down the group						
Be	does not react with water or steam					
Mg	reacts slowly with cold water and quickly with steam Mg _(s) + H ₂ O _(g) ——> MgO _(s) + H _{2(g)}					
Ca, Sr, Ba <i>e.g.</i>	react with cold water with increasing vigour Ca _(s) + 2H ₂ O _(l) ———> Ca(OH) _{2(aq)} + H _{2(g)}					

COMPOUNDS

Water

- *Hydroxides* white crystalline solids
 - solubility in water increases down the Group

$\begin{array}{llllllllllllllllllllllllllllllllllll$	- an aqueous solution is known as 'lime water'
--	--

· basic strength also increases down group

- the metal ions get larger so charge density decreases
- there is a lower attraction between the OH⁻ ions and larger unipositive ions
- the ions will split away from each other more easily
- there will be a greater concentration of OH⁻ ions in water

 $M(OH)_{2(s)}$ + water ----> $M^{2+}_{(s)}$ + $2OH^{-}_{(aq)}$

'The greater the concentration of OH⁻ ions in water the greater the alkalinity'

Periodicity

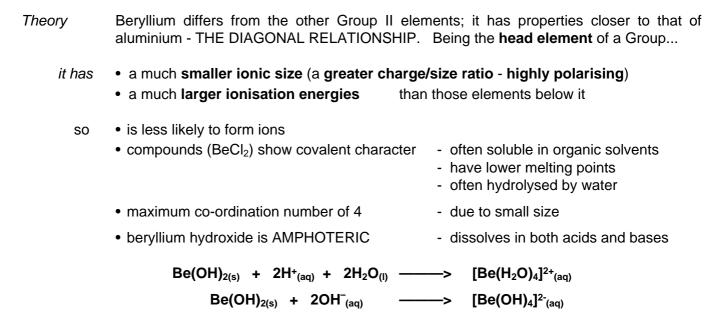
Sulphates • white crystalline solids

· solubility in water decreases down the Group

Salt	Ionic radius (M ²⁺) / nm	Hydration Enthalpy (M ²⁺) / kJ mol ⁻¹	Solubility moles/100g
MgSO ₄	0.064	-1891	3600 x 10 ⁻⁴
CaSO ₄	0.094	-1562	11 x 10 ⁻⁴
SrSO ₄	0.110	-1413	0.62×10^{-4}
BaSO ₄	0.134	-1273	0.009 x 10 ⁻⁴

• reasons for solubility decreasing down the group ...

- there is little change in the lattice enthalpy BUT
- as the cation gets larger the hydration enthalpy gets much smaller
- a larger cation has a lower charge density and so is less attracted to water


Testing for sulphates • barium sulphate's insolubility is used as a test for sulphates

- Method make up a solution of the compound to be tested
 - acidify it with dilute hydrochloric (or nitric) acid *
 - add a few drops of barium chloride solution
 - white precipitate of barium sulphate conforms the presence of a sulphate

 $Ba^{2+}_{(aq)}$ + $SO_4^{2-}_{(aq)}$ -----> $BaSO_{4(s)}$

* adding acid prevents the precipitation of other insoluble ions such as carbonate

THE ATYPICAL NATURE OF BERYLLIUM

3