GROUP II ELEMENTS Beryllium to Barium

Introduction Elements in Group I (alkali metals) and Group II (alkaline earths) are known as **s-block elements** because their valence (bonding) electrons are in s orbitals.

	Be	Mg	Ca	Sr	Ba
Atomic Number	4	12	20	38	56
Electronic configuration	1s ² 2s ²	[Ne] 3s ²	[Ar] 4s ²	[Kr] 5s ²	[Xe] 6s ²

PHYSICAL PROPERTIES

Atomic Radius Increases down each group electrons are in shells further from the nucleus

	Be	Mg	Ca	Sr	Ba
Atomic radius / nm	0.106	0.140	0.174	0.191	0.198

Ionic SizeIncreases down the groupThe size of positive ions is less than the original atom because the nuclear charge
exceeds the electronic charge.

	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
Ionic radius / nm	0.030	0.064	0.094	0.110	0.134

 Melting Points
 Decrease down each group
 metallic bonding gets weaker due to increased size

 Each atom contributes two electrons to the delocalised cloud. Melting points tend not to give a decent trend as different crystalline structures affect the melting point.

	Be	Mg	Ca	Sr	Ba
Melting point / °C	1283	650	850	770	710

Ionisation Energy Decreases down the group atomic size increases

Values for Group I are low because the electron has just gone into a new level and is shielded by filled inner levels. This makes them reactive. Group II elements have higher values than their Group I equivalents due to the increased nuclear charge.

	Be	Mg	Ca	Sr	Ba
Ist I.E. / kJ mol ⁻¹	899	738	590	550	500
2nd I.E. / kJ mol ⁻¹	1800	1500	1100	1100	1000
3rd I.E. / kJ mol ⁻¹	14849	7733	4912	4120	3390

There is a large increase for the 3rd I.E. as the electron is now being removed from a shell nearer the nucleus and there is less shielding.

2

Electronegativity Decreases down the group

Increased shielding makes the shared pair less strongly attracted to the nucleus

	Be	Mg	Ca	Sr	Ba
Electronegativity (Pauling)	1.5	1.2	1.0	0.95	0.89

2811

Hydration

Enthalpy

This is a measure of an ion's attraction for water **Decreases** (gets less negative) **down each group**

Charge density of the ions decreases thus reducing the attraction for water

	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
Hydration Enthalpy / kJ mol ⁻¹		-1920	-1650	-1480	-1360

CHEMICAL PROPERTIES

Oxygen · react with increasing vigour down the group Mg burns readily with a bright white flame —> 2MgO_(s) 2Mg_(s) + O_{2(g)} ----Ca, Sr, Ba Similar reaction Ca brick red flame Sr crimson flame Ba apple green flame Water · react with increasing vigour down the group Be does not react with water or steam Mg reacts very slowly with cold water $Mg_{(s)} + 2H_2O_{(l)} \longrightarrow Mg(OH)_{2(aq)} + H_{2(g)}$ but reacts quickly with steam $Mg_{(s)} + H_2O_{(q)} \longrightarrow MgO_{(s)} + H_{2(q)}$ Ca, Sr, Ba react with cold water with increasing vigour e.g. Ca_(s) + 2H₂O_(l) -----> Ca(OH)_{2(aq)} + H_{2(g)}

Reason(s) for the difference in reactivity...

Group II

Group II

COMPOUNDS

Sulphates • white crystalline solids

• solubility in water decreases down the Group

Salt	Ionic radius (M ²⁺) / nm	Hydration Enthalpy (M ²⁺) / kJ mol ⁻¹	Solubility moles/100g
MgSO ₄	0.064	-1891	3600×10^{-4}
CaSO ₄	0.094	-1562	11 x 10 ⁻⁴
SrSO ₄	0.110	-1413	0.62×10^{-4}
BaSO ₄	0.134	-1273	0.009 x 10 ⁻⁴

- reasons for solubility decreasing down the group ...
 - there is little change in the lattice enthalpy BUT
 - as the cation gets larger the hydration enthalpy gets much smaller
 - a larger cation has a lower charge density and so is less attracted to water

Testing for sulphates

barium sulphate's insolubility is used as a test for sulphates

Method

- make up a solution of the compound to be tested
- acidify it with dilute hydrochloric (or nitric) acid *
- add a few drops of barium chloride solution
- white precipitate of barium sulphate conforms the presence of a sulphate

 $Ba^{2+}_{(aq)}$ + $SO_4^{2-}_{(aq)}$ -----> $BaSO_{4(s)}$

* adding acid prevents the precipitation of other insoluble ions such as carbonate

- *Hydroxides* white crystalline solids
 - · solubility in water increases down the Group

Be(OH)2insolubleMg(OH)2sparingly solubleCa(OH)2slightly soluble- an aqueous solution is known as 'lime water'Sr(OH)2quite solubleBa(OH)2very soluble

2811

- · basic strength also increases down group
- the metal ions get larger so charge density decreases
- there is a lower attraction between the OH⁻ ions and larger unipositive ions
- the ions will split away from each other more easily
- there will be a greater concentration of OH⁻ ions in water

 $M(OH)_{2(s)}$ + water ----> $M^{2+}_{(aq)}$ + $2OH^{-}_{(aq)}$

'The greater the concentration of OH⁻ ions in water the greater the alkalinity'

THE ATYPICAL NATURE OF BERYLLIUM

TheoryBeryllium differs from the other Group II elements; it has properties closer to that of
aluminium - THE DIAGONAL RELATIONSHIP. Being the head element of a Group...

it has • a much **smaller ionic size** (a **greater charge/size ratio** - **highly polarising**)

• a much larger ionisation energies than those elements below it

so •

- is less likely to form ions
 compounds (BeCl₂) show covalent character often soluble in organic solvents
 - often hydrolysed by water
- maximum co-ordination number of 4
 due to small size
- beryllium hydroxide is AMPHOTERIC
- dissolves in both acids and bases

[Be(OH)₄]²⁻(ag)

- have lower melting points

 $Be(OH)_{2(s)} + 2H_{(aq)} + 2H_2O_{(l)} \longrightarrow [Be(H_2O)_4]^{2+}(aq)$

 $Be(OH)_{2(s)} + 2OH_{(aq)}$

CALCIUM AND ITS COMPOUNDS

Source	Most calcium is	found as calcium	carbonate in	limestone	
Compounds	limestone quicklime slaked lime lime water	calcium carbona calcium oxide solid calcium hy aqueous calciun	te droxide n hydroxide	$\begin{array}{l} CaCO_{3(s)}\\ CaO_{(s)}\\ Ca(OH)_{2(s)}\\ Ca(OH)_{2(aq)} \end{array}$	making cement iron purification soil treatment testing for CO ₂
Review of Reactions	limestone decomposes on strong heating giving quicklime and carbon dioxide		CaCO _{3(s)} -	—→> CaO _(s)	+ CO _{2(g)}
	quicklime reacts to produce slake (calcium hydroxi	with water e d lime de)	CaO _(s) + I	H ₂ O _(I) > (Ca(OH) _{2(s)}
	calcium hydroxic soluble - an aqu called lime wate	de is sparingly eous solution is er (pH = 9-10)	Ca(OH) _{2(s)}	——> Ca(OH))2(aq)
	lime water reacts carbon dioxide	s with	Ca(OH) _{2(aq)}	+ CO _{2(g)} ;	> CaCO _{3(s)} + H ₂ O _(l)
	excess carbon d calcium hydroge	lioxide produces ncarbonate	CaCO _{3(s)} +	$H_2O_{(l)} + CO_{2(l)}$	_{g)} ——> Ca(HCO ₃) _{2(aq)}
	heating reverses	s the process	Ca(HCO ₃) _{2(;}	_{aq)} ——> CaCC	$D_{3(s)} + H_2O_{(l)} + CO_{2(g)}$
	THE CALCIUM CYCLE	CC Ca(OH) ₂	D ₂ Lime Water	CaCO ₃ Limestone	Quicklime CaO

H₂O

H₂O

Slaked <

Ca(OH)₂

5

6	2811	Group II
Lime water	 an aqueous solution of calcium hydroxide - g calcium hydroxide is only sparingly soluble in used as a laboratory test for carbon dioxide passing carbon dioxide through lime water pr Ca(OH)_{2(aq)} + CO_{2(g)}> CaCO_{3(s)} + H₂ the white precipitate re-dissolves with EXCES CaCO_{3(s)} + H₂O_(l) + CO_{2(g)}> Ca(HC 	DH = 9-10 water roduces a white precipitate D(I) SS carbon dioxide D ₃) _{2(aq)}
	 warming the solution reverses the process ar Ca(HCO₃)_{2(aq)}> CaCO_{3(s)} + H₂O_(l) + 0 	nd precipitates calcium carbonate CO _{2(g)}
Hard water	 water that doesn't form a lather easily with so contains soluble calcium and magnesium ion insoluble calcium and magnesium salts do not formed by the action of rain and carbon dioxic CaCO_{3(s)} + H₂O (I) + CO_{2(g)}> Ca(HCO) 	oap ns - Ca²+ and Mg²+ ot cause hardness de on limestone O ₃) _{2(aq)}
	 calcium hydrogencarbonate produces tempo temporary hardness is removed by heating the Ca(HCO₃)_{2(aq)}> CaCO_{3(s)} + H₂O_(l) + CaCO_{3(s)} 	rary hardness ne water - cause of 'fur' in kettles C O _{2(g)}
	 other ways of removing hardness include 	ion exchange distillation using excess soap using washing soda
Slaked lime	 solid calcium hydroxide used to reduce the acidity of soil to get better Ca(OH)_{2(s)} + 2H⁺ (ag)> Ca²⁺(ag) + 	⁻ crop yields 2H₂O ()
	 much safer to use than sodium hydroxide wh 	ich is caustic
Limestone	 solid calcium carbonate used in the extraction of iron to remove impu it thermally decomposes to give quicklime calcium oxide reacts with silica calcium silicate (slag) is formed 	rities CaCO _{3(s)} ——> CaO _(s) + CO _{2(g)} CaO _(s) + SiO _{2(s)} ——> CaSiO _{3(s)}
Quicklime	• solid calcium oxide	

 $\ensuremath{\bullet}$ removes impurities in iron and steel making $\ensuremath{\ -}$ see above

Ň		
General	Group II el	ements and compounds are used widely in industry.
Magnesium	Property Use	burns with a bright white light flares, incendiary bombs, tracer bullets
	Property Use	high in reactivity series sacrificial metal to protect steel from corroding on ships' hulls extraction of titanium
Magnesium hydroxide	Property Use	weak alkali in indigestion tablets and toothpaste to remove acidity $Mg(OH)_{2(s)}$ + $2H^+_{(aq)}$ > $Mg^{2+}_{(aq)}$ + $2H_2O_{(I)}$
Calcium hydroxide	Property Use	weak alkali soild is added to soil to reduce acidity $Ca(OH)_{2(s)} + 2H^{+}_{(aq)} \longrightarrow Ca^{2+}_{(aq)} + 2H_{2}O_{(l)}$
	Calcium I acid than and would	hydroxide and magnesium hydroxide are preferable for neutralisng any Group I hydroxide such as NaOH. Sodium hydroxide is caustic d burn skin or damage plants if it came into contact with them.
Calcium oxide	Property Use	basic oxide removal of impurities in the blast furnace CaO _(s) + SiO _{2(s)} > CaSiO _{3(s)} base acid slag'
Calcium carbonate	Property Use	basic oxide removal of impurities in the blast furnace manufacture of cement by heating it with clay

MAJOR USES OF GROUP II COMPOUNDS - A SHORT REVIEW

_____ 7