EXTRACTION OF METALS

Occurrence • ores of some metals are very common (iron, aluminium)

- others occur only in limited quantities in selected areas
- ores need to be purified before being reduced to the metal this adds to the expense
- high grade ores are therefore cheaper to process.

Theory The method used depends on the . . . • purity required

- energy requirements
- · cost of the reducing agent
- · position of the metal in the reactivity series

Reactivity Series

K Na Ca Mg Al **C** Zn Fe **H** Cu Ag

- Lists metals in descending reactivity
- Hydrogen and carbon are often added
- The more reactive a metal the less likely it will be found in its pure, or native state.
- Consequently it will be harder to convert it back to the metal.

Methods

General	Low in series	occur native or extracted by roasting an ore	e.g.	Cu, Ag
	Middle of series	metals below carbon are extracted by reduction of the oxide with carbon or carbon monoxide	e.g.	Zn, Fe
	High in series	reactive metals are extracted using electrolysis - an expensive method due to energy costs	e.g.	Na, Al

Variations can occur due to special properties of the metal.

Specific	 reduction of metal oxides with carbon 	IRON
	 reduction of metal halides with a metal 	TITANIUM
	 reduction of metal oxides by electrolysis 	ALUMINIUM
	 reduction of metal oxides with a metal 	CHROMIUM

Metal	Ore(s)	O.N. in ore	Use / importance	Method	Process
Aluminium					
Copper					
Sodium					
Tungsten					
Zinc					

1

EXTRACTION OF IRON

Process	•	high	tem	perature

- continuous
- reduction of iron ores by carbon / carbon monoxide in the Blast Furnace
- possible because iron is below carbon in the reactivity series

Raw

materials	iron ore	Fe ₂ O ₃ - haematite	
	coke	fuel / reducing agent - cheap and plentiful	
	air	for combustion of fuel	
	limestone	for conversion of silica into slag (calcium silicate which is used in the construction industry	

• CO₂ burning fossil fuels increases the amount of this greenhouse gas

- *Limitations* Theoretically, several other important metals can be extracted this way but are not because they **combine with the carbon to form a carbide**
 - e.g. Molybdenum, Titanium, Vanadium, Tungsten
- *Usefulness* Iron produced from the Blast Furnace contains a lot of carbon which makes it brittle. To make it more useful, most iron is made into steel.

STEEL MAKING

Process In the **Basic Oxygen Process**, excess carbon is burnt off in a converter and the correct amount of carbon added to make steel. Other metals (e.g. chromium) can be added to make specialist steels.

Removal of impurities

SILICA	add calcium oxide	$CaO + SiO_2 \longrightarrow CaSiO_3$
CARBON	burnt off using oxygen	$C + O_2 \longrightarrow CO_2$
PHOSPHORUS	burnt off using oxygen	2P + 5O ₂ > P ₄ O ₁₀
SULPHUR	magnesium is added	Mg + S> MgS

Q.1 Give a use and reason for using the following metals in specialist steels.

- a) chromium
- b) manganese
- c) cobalt

What is pig iron? How did it get its name?

3

AS2

Aluminium Electrolysis of alumina (impure in bauxite) ... aluminium is above carbon in the series.

- Cryolite (Na₃AIF₆) is mixed with the alumina to lower the (very high) melting point.
- Consumes vast amounts of electricity so H.E.P. is needed (e.g. Scottish Highlands)
- Aluminium is discharged at the cathode $AI^{3+} + 3e^{-} \longrightarrow AI$ Oxygen is discharged at the anode $O^{2-} \longrightarrow \frac{1}{2}O_2 + 2e^{-}$

Q.3 Why do the carbon anodes need to be replaced at regular intervals?

4

AS2

Q.5 List other factors taken into consideration when metals are extracted

RECYCLING

Problems	• •
Social benefits	• •
Economic benefits	• •