

ELECTRONEGATIVITY

"The ability of an atom to attract the pair of electrons in a covalent bond to itself."

Bonding types	IONIC	Ions are held together because oppositely charged species attract				
	COVALENT	Atoms are held together because their nuclei are both pulling on the same shared pair of electrons - a bit like tug-of-war!				
		Nuclear charge, shielding and atomic size affect the pulling power				
Non-polar bond	 similar atoms they will both the electrons the electron d 	have the same electronegativity a pull on the electrons to the same extent will be equally shared lensity will be symmetrical	н н H — H non polar			
Polar bond	 different atom one will pull to the electron d one end will to the other will a dipole is incoment. 	hs have different electronegativities the electron pair closer to its end lensity will be unsymmetrical be slightly more negative than average, δ - be slightly less negative, or more positive, δ + duced and the bond is said to be polar	H F $H^{\delta +} - F^{\delta -}$ polar			

• the greater the difference in electronegativity, the greater the polarity of the bond.

The Pauling Scale

Trends	 values increase across periods nuclear charge is increasing outer electrons are in the same shell no extra shielding 	Pauling Electronegativity Values H 2.1							
		Li	Be	В	С	Ν	0	F	
		1.0	1.5	2.0	2.5	3.0	3.5	4.0	
	• values deereese deven grouns	Na	Mg	Al	Si	Р	S	Cl	
	 values decrease down groups increased shielding outer electrons further away 	0.9 K 0.8	1.2	1.5	1.8	2.1	2.5	3.0 Br 2.8	
	= SMALLER PULLING POWER								
Consequences	Bond polarity can influence • boiling point								

• solubility

- structure
- chemical reactivity