
CARBOXYLIC ACIDS

Structure

- contain the carboxyl functional group COOH
- includes a carbonyl (C=O) group and a hydroxyl (O-H) group
- the bonds are in a planar arrangement
- are isomeric with esters :- RCOOR'

Draw structures for, and name, all **carboxylic acids** with formula :- CH_2O_2 $C_2H_4O_2$ $C_3H_6O_2$ $C_4H_8O_2$ $C_5H_{10}O_2$

Nomenclature

Remove e from the equivalent alkane and add . . . OIC ACID .

e.g. CH₃COOH is called ethanoic acid as it is derived from ethane.

Many carboxylic acids are still known under their trivial names, some having been called after characteristic properties or origin.

Formula	name	(trivial name)	origin of name
НСООН	methanoic acid	formic acid	latin for ant
CH₃COOH	ethanoic acid	acetic acid	latin for vinegar
C ₆ H ₅ COOH	benzenecarboxylic acid	benzoic acid	from benzene

Physical properties

Solubility

- · acids are very soluble in organic solvents
- soluble in water is due to hydrogen bonding
- small ones dissolve readily in cold water
- as mass increases, the solubility decreases
- benzoic acid is fairly insoluble in cold but soluble in hot water

$$CH_{3} - C O - H^{\delta+} O H^{\delta+}$$

$$O - H^{\delta+} O + H^{\delta+} O H^{\delta+}$$

Intermolecular hydrogen bonding between ethanoic acid and water

In non-polar solvents, molecules dimerize due to intermolecular hydrogen bonding.

- Boiling point increases as size increases increased van der Waals forces
 - carboxylic acids have high boiling points for their relative mass
 - arises from inter-molecular hydrogen bonding due to the polar O—H bonds
 - additional inter-molecular attractions = more energy needed to separate the molecules

The effect of hydrogen bonding on the boiling point of compounds of similar mass

Compound	Formula	M _r	b. pt. (°C)	Comments
ethanoic acid	CH₃COOH	60		
propan-1-ol	C ₃ H ₇ OH	60		
propanal	C ₂ H ₅ CHO	58		
butane	C_4H_{10}	58		

Preparation

· Oxidation of aldehydes RCHO + [O]**RCOOH** · Hydrolysis of esters RCOOR + H₂O RCOOH + ROH · Hydrolysis of acyl chlorides RCOCI + H₂O RCOOH + HCI · Hydrolysis of nitriles 2 H₂O RCOOH + NH₃ • Hydrolysis of amides $RCONH_2 + H_2O$ RCOOH + NH₃

CHEMICAL PROPERTIES

Acidity

weak monobasic acids

RCOOH +
$$H_2O_{(I)}$$
 \rightleftharpoons RCOO $^-_{(aq)}$ + $H_3O^+_{(aq)}$

• form salts with alkalis

RCOOH + NaOH_(aq)
$$\longrightarrow$$
 RCOO⁻Na⁺_(aq) + H₂O_(I)

The acid can be liberated from its salt by treatment with a stronger acid.

2814

e.g.
$$RCOO^-Na^+_{(aq)} + HCI_{(aq)} \longrightarrow RCOOH + NaCI_{(aq)}$$

Conversion of an acid to its water soluble salt followed by acidification of the salt to restore the acid is often used to separate acids from a mixture.

Carboxylic acids are strong enough acids to liberate CO₂ from carbonates.

Phenols are also acidic but not are not strong enough to liberate CO₂

Esterification Involves the reaction of a carboxylic acid with an alcohol. The reaction is **reversible**.

Reagent(s) Alcohol + acid catalyst (e.g. conc. H₂SO₄)

Conditions Reflux

Equation $CH_3COOH + CH_3OH \iff CH_3COOCH_3 + H_2O$

This is an **example of equilibrium**. Sulphuric acid not only makes an excellent catalyst but also removes any water produced which will, according to Le Chatelier's Principle, move the equilibrium position to the right and produce a bigger yield of ester.

Q.2 State the compounds needed to synthesise the following four esters;

propyl ethanoate

ethyl propanoate

 $C_5H_{11}COOCH_3$

 $HCOOC_2H_5$

Chlorination Involves replacing the OH with a CI to form an acyl chloride

Reagent(s) thionyl chloride SOCl₂

Conditions dry conditions

Equation $CH_3COOH + SOCI_2 \longrightarrow CH_3COCI + SO_2 + HCI$

ESTERS - RCOOR'

Structure

Substitute an organic group for the H in acids

Nomenclature

first part from alcohol, second part from acid

methyl ethanoate CH3COOCH3 e.g.

$$CH_3 - C$$
 $O + CH_3$
ACID ALCOHOL

Draw structures for, and name, all esters of formula $C_4H_8O_2$ and $C_5H_{10}O_2$. From which acid and alcohol are each derived?

Preparation From carboxylic acids or acyl chlorides

Reactions Esters are unreactive compared with acids and acyl chlorides.

Hydrolysis

reflux in acidic soln.

CH₃COOCH₃ + NaOH —> CH₃COO⁻Na⁺ + CH₃OH

reflux in alkaline soln.

- *Triglycerides* are the most common component of edible fats and oils.
 - are esters of the alcohol glycerol, (propane-1,2,3-triol).

- Saponification alkaline hydrolysis of triglycerol esters produces soaps
 - a simple soap is the salt of a fatty acid
 - as most oils contain a mixture of triglycerols, soaps are not pure compounds
 - the quality of a soap depends on the oils from which it is made

Uses

Despite being fairly chemically unreactive substances esters are useful as ...

- solvents e.g.
- plasticisers e.g.
- "fruity" food flavouring e.g.

Consult a suitable text book to find some esters with characteristic smells.

2814

DERIVATIVES OF CARBOXYLIC ACIDS

ACYL (ACID) CHLORIDES - RCOCI

Nomenclature Named from corresponding acid

> - remove -ic add -yl chloride

CH₃COCI ethanoyl (acetyl) chloride

C₆H₅COCI benzene carbonyl (benzoyl) chloride

polarity of bonds in acyl chlorides

Preparation Involves replacing the OH of a carboxylic acid with a Cl atom

Method 1 thionyl chloride SOCI₂ Reagent(s)

> Conditions dry conditions

Equation CH₃COOH SOCI₂ CH₃COCI **HCI** SO₂

phosphorus(V) chloride PCI₅ Method 2 Reagent(s)

> Conditions dry conditions

Equation CH₃COOH CH₃COCI POCI₃ + PCI₅

Chemical

Properties

- colourless liquids which fume in moist air
- attacked at the positive carbon centre by nucleophiles
- nucleophiles include water, alcohols, ammonia and amines
- · undergo addition-elimination reactions
- MUCH MORE REACTIVE THAN CARBOXYLIC ACIDS AND ACID ANHYDRIDES

Product(s) carboxylic acid + HCI (fume in moist air / strong acidic solution formed) Water

> Conditions cold water

Equation $CH_3COCI_{(I)} + H_2O_{(I)} \longrightarrow CH_3COOH_{(aq)} + HCI_{(aq)}$

addition-elimination Mechanism

Alcohols

Product(s) ester + hydrogen chloride

Conditions reflux in dry (anhydrous) conditions

 $CH_3COCI_{(1)} + CH_3OH_{(1)} \longrightarrow CH_3COOCH_{3(1)} + HCI_{(2)}$ Equation

Mechanism addition-elimination

$$\begin{array}{c} Cl \\ C = O \\ CH_{3} \\ H - \ddot{O} : \\ CH_{2} \end{array} \xrightarrow{\delta -} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow$$

Amines

Product(s) N-substituted amide + hydrogen chloride

Conditions anhydrous

Equation $CH_3COCI_{(1)} + C_2H_5NH_{2(aq)} \longrightarrow CH_3CONHC_2H_{5(s)} + HCI_{(q)}$

 $CH_3COCI_{(I)} + 2C_2H_5NH_{2(aq)} \longrightarrow CH_3CONHC_2H_{5(s)} + C_2H_5NH_3CI_{(s)}$

Mechanism addition-elimination

$$\begin{array}{c} Cl \\ C = O \\ CH_{3} \\ CH_{3} \\ H \\ R = N \\ \end{array} \begin{array}{c} Cl \\ CH_{3} \\ C = O \\ CH_{3} \\ \end{array} \begin{array}{c} CH_{3} \\ C = O \\ CH_{3} \\ \end{array} \begin{array}{c} CH_{3} \\ CH_{3}$$

Ammonia

Product(s) Amide + hydrogen chloride

Conditions Low temperature and excess ammonia. Vigorous reaction.

 $CH_3COCI_{(I)} + NH_{3(aq)} \longrightarrow CH_3CONH_{2(s)} + HCI_{(q)}$ Equation

> $CH_3COCI_{(I)} + 2NH_{3(aq)} \longrightarrow CH_3CONH_{2(s)} + NH_4CI_{(s)}$ or

Mechanism addition-elimination

State the reagents used to synthesise...

 $C_6H_5CON(CH_3)_2$ $C_3H_7COOCH_3$ C_2H_5COOH