

# GCE

# **Chemistry A**

### H432/03: Unified chemistry

Advanced GCE

## Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

#### 1. Annotations

| Annotation            | Meaning                                |
|-----------------------|----------------------------------------|
| <ul> <li>✓</li> </ul> | Correct response                       |
| ×                     | Incorrect response                     |
|                       | Omission mark                          |
| BOD                   | Benefit of doubt given                 |
| CON                   | Contradiction                          |
| RE                    | Rounding error                         |
| SF                    | Error in number of significant figures |
| ECF                   | Error carried forward                  |
| [1]                   | Level 1                                |
| L2                    | Level 2                                |
| L3                    | Level 3                                |
| NBOD                  | Benefit of doubt not given             |
| SEEN                  | Noted but no credit given              |
| I                     | Ignore                                 |

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| IGNORE       | Statements which are irrelevant                            |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
|              | Underlined words must be present in answer to score a mark |
| ECF          | Error carried forward                                      |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |

| Question | Answer                                                                                                                                                                          | Marks | AO<br>element  | Guidance                                                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (a)    | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 20 award 2 marks<br>$n(CO_2) = \frac{110}{44}$ OR 2.5 (mol)<br>AND<br>$n(O_2) = \frac{120}{32}$ OR 3.75 (mol) $\checkmark$ | 2     | AO1.2<br>× 2   |                                                                                                                                                                                                                                          |
|          | $p(CO_2) = \frac{2.5}{6.25} \times 50.0 \text{ OR } 0.4 \times 50.0 = 20(.0) \text{ (atm) } \checkmark$                                                                         |       |                | ALLOW ECF<br>from incorrect $\Sigma$ ( $n(CO_2) + n(O_2)$ ) ONLY                                                                                                                                                                         |
| (b)      | FIRST CHECK THE ANSWER ON ANSWER LINES<br>If [PCI <sub>3</sub> ] = [CI <sub>2</sub> ] = 0.02(00) award 2 marks                                                                  | 2     | AO1.1<br>AO2.2 | Square brackets required<br><b>Common errors</b><br>2.00 × 10 <sup>-4</sup> from $K_c = \frac{[PCl_3] [Cl_2]}{[PCl_5]}$ 1 mark<br>÷2 instead of $$<br>2.5 from $K_c = \frac{[PCl_5]}{[PCl_3] [Cl_2]}$ 1 mark<br>Inverse $K_c$ expression |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks      | AO<br>element                 | Guidance                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question | Answer         Electronegativity and boiling point         Boiling point/Energy increases with increased         electronegativity (difference) ✓         Type of intermolecular force         HF AND NH <sub>3</sub> have hydrogen bonding         AND         CH4 has London forces/induced (dipole–)dipole interactions         ✓         Comparison between strength of intermolecular forces         HF has stronger hydrogen bonding than NH <sub>3</sub> OR hydrogen bonding is stronger than London forces ✓ | Marks<br>3 | -                             | Guidance ANNOTATE WITH TICKS AND CROSSES ALLOW ORA throughout ORA IGNORE permanent dipole interactions IGNORE IDID IGNORE IDID IGNORE HF and NH <sub>3</sub> are polar/CH <sub>4</sub> is non-polar IGNORE strength of ionic and covalent bonds IGNORE working                                                                                                                                                |
|          | A: $Ca_3N_2$ (formula required) $\checkmark$<br>B: $NH_3$ OR ammonia $\checkmark$<br>C: $Ca(OH)_2$ OR calcium hydroxide $\checkmark$<br>Equation:<br>$Ca_3N_2 + 6H_2O \rightarrow 2NH_3 + 3Ca(OH)_2 \checkmark$                                                                                                                                                                                                                                                                                                      |            | AO1.1<br>AO2.7<br>×2<br>AO2.6 | If <b>B</b> and <b>C</b> labels are the wrong way round <b>OR</b><br>missing, award 1/2 for <b>B</b> and <b>C</b> labels,<br>i.e. for <b>B</b> Ca(OH) <sub>2</sub> <b>C</b> NH <sub>3</sub> 1/2 marks<br><b>ALLOW</b> CaO <sub>2</sub> H <sub>2</sub><br><b>ALLOW</b> multiples for equation<br>IF <b>C</b> = CaO, <b>ALLOW ECF</b> for:<br>Ca <sub>3</sub> N <sub>2</sub> + $3H_2O \rightarrow 2NH_3 + 3CaO$ |

| Question Answer                                                                                                                                                                                                                                                                                                                                              | Marks | AO<br>element                | Guidance                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QuestionAnswer(e) $2CH_3CH(OH)COOH + Na_2CO_3 \rightarrow 2CH_3CH(OH)COONa + CO_2 + H_2O$ CO_2 and H_2O OR CH_3CH(OH)COONa as product(s)<br>$\checkmark$ Balanced equation correct $\checkmark$ 3CH_3CH(OH)COOH + AI $\rightarrow$ (CH_3CH(OH)COO)_3AI + 1½ H_2<br>H_2 OR (CH_3CH(OH)COO)_3AI as product $\checkmark$ Balanced equation correct $\checkmark$ | 4     | AO<br>element<br>AO2.6<br>×4 | Guidance<br>ALLOW multiples<br>IGNORE state symbols<br>ALLOW ions shown separately<br>For CO <sub>2</sub> AND H <sub>2</sub> O, ALLOW H <sub>2</sub> CO <sub>3</sub><br>ALLOWCOONa <sup>+</sup> (i.e. one of charges missing)<br>ALLOWCOO) <sub>3</sub> Al <sup>3+</sup> (i.e. one of charges missing) |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | AO<br>element           | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (f)      | Mechanism:<br>$H \rightarrow C^{\delta+} C^{\delta-} \rightarrow H \rightarrow C^{\delta+} C^{\delta-} \rightarrow C^{\delta+} C^{\delta-} \rightarrow C^{\delta+} C^{\delta-} C^{\delta-} \rightarrow C^{\delta+} C^{\delta-} C^{\delta+} C^{\delta-} $ | 3     | A02.5<br>A01.2<br>A02.5 | ANNOTATE ANSWER TICKS AND CROSSES<br>NOTE: Curly arrows can be straight, snake-like, etc.<br>but NOT double headed or half headed arrows<br>1st curly arrow must start from, OR be traced back<br>to, any part of C–Cl bond and go to Cl<br>C - Cl $C - Cl$ $C - Cl2nd curly arrow must• go to the C of C–ClAND• start from, OR be traced back to any pointacross width of lone pair on O of CH3COO-CH_3COO^ CH_3COO^ CH_3COO^- ionCH_3COO^ (Lone pair NOT needed if curly arrow from O-)If CH3COOH used instead of CH3COO-,ALLOW X- OR HX as 2nd product$ |

| H432/03 |
|---------|
|---------|

| Question | Answer | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|--------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |        |       |               | ALLOW S <sub>N</sub> 1 mechanism<br>First mark<br>Dipole shown on C–Cl bond, C <sup>8+</sup> and Cl <sup>8-</sup> ,<br>AND curly arrow from C–Cl bond to Cl atom $\checkmark$<br>$H \longrightarrow c^+ \frown cl^{-} \longrightarrow H \longrightarrow c^+ + Cl^-$<br>Second mark<br>Correct carbocation AND curly arrow from CH <sub>3</sub> COO <sup>-</sup><br>to carbocation<br>$H \longrightarrow H \longrightarrow c^+ \longrightarrow H \longrightarrow c^- OOCCH_3$<br>$CH_3COO^-$<br>Curly arrow must be from lone pair on O of<br>$CH_3COO^-$<br>OR from minus on O of CH <sub>3</sub> COO <sup>-</sup> ion (no need to<br>show lone pair if curly came from – charge) $\checkmark$<br>Third mark<br>Correct organic product AND Cl <sup>-</sup> $\checkmark$ |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 (a)    | Closed system that would work (Labels not required)<br>Reaction apparatus with tube/side arm<br>AND gas collection apparatus<br>AND closed system ✓<br>Labels<br>Reaction apparatus, e.g.:<br>Conical flask, Buchner flask/conical flask with<br>side arm, test-tube, boiling tube.<br>AND<br>Gas collection apparatus:<br>(gas) syringe<br>OR gas collection over water with labelled<br>measuring cylinder / burette ✓ | 2     | AO3.3<br>× 2  | <ul> <li>ALLOW small gaps provided there is an attempt to show closed system</li> <li>DO NOT ALLOW delivery tube below reaction mixture</li> <li>For reaction apparatus, <ul> <li>DO NOT ALLOW flask, volumetric flask, beaker, measuring cylinder</li> <li>Delivery tube, bung does NOT need a label</li> </ul> </li> <li>ALLOW labels for diagram without closed system (e.g. bung missing), i.e. 2nd mark but not 1st mark</li> <li>ALLOW any of these diagrams.</li> <li>ALLOW a single line for the tube</li> <li>IGNORE Sealed end of delivery tube</li> <li>IGNORE size of syringe/measuring cylinder/burette</li> </ul> |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks | AO<br>element              | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)      | $n(H_2) = \frac{152}{24000} \text{ OR } 6.33 \times 10^{-3} \text{ (mol) } \checkmark$ $n(Eu) = \frac{0.988}{152} \text{ OR } 6.5(0) \times 10^{-3} \text{ (mol) } \checkmark$ Ratio H <sub>2</sub> : Eu 1 : 1<br>AND<br>Equation 2 is correct $\checkmark$<br><i>Only ALLOW if</i> $n(H_2)$ <i>AND</i> $n(Eu)$ are approximately<br>equal<br>ALLOW use of ideal gas equation at a reasonable<br>temperature and pressure.<br>e.g. Using 100 kPa and 298 K, $n(H_2) = 6.14 \times 10^{-3}$ mol | 3     | AO2.8<br>×2<br>AO3.2<br>×1 | <b>152</b> $6.5(0) \times 10^{-3}$ (mol)<br><b>ALLOW</b> $0.97(4) : 1$<br><b>ALLOW ECF</b> from incorrect <i>n</i> (Eu)<br><b>OR/AND</b> <i>n</i> (H <sub>2</sub> )<br><b>ALLOW</b> approach that calculates mass Eu from<br>$6.33 \times 10^{-3}$ mol H <sub>2</sub> for each equation, e.g.<br>Equation 1: $2 \times 6.33 \times 10^{-3} \times 152$<br>= 1.9g<br>Equation 2: $1 \times 6.33 \times 10^{-3} \times 152$<br>= 0.96g<br>Equation 3: $2/3 \times 6.33 \times 10^{-3} \times 152$<br>$= 0.64g \checkmark$<br>0.988 matched to 0.96 g and Equation 2 ✓<br><i>Use judgment</i><br><b>ALLOW</b> approach that calculates volume H <sub>2</sub> from<br>$6.50 \times 10^{-3}$ mol Eu for each equation, e.g.<br>Equation 1: $0.5 \times 24000 \times 6.50 \times 10^{-3}$<br>$= 78 \text{ cm}^3$<br>Equation 2: $1 \times 24000 \times 6.50 \times 10^{-3}$<br>$= 156 \text{ cm}^3$<br>Equation 3: $1.5 \times 24000 \times 6.50 \times 10^{-3}$<br>$= 234 \text{ cm}^3 \checkmark$<br>152 matched to 156 cm <sup>3</sup> and Equation 2 ✓<br><i>Use judgment</i> |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)      | The gas volume would be larger (than at RTP) $\checkmark$<br>Ratio H <sub>2</sub> : Eu would be larger $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2     | AO3.4<br>×2   | IGNORE effect of rate, e.g. rate increases<br>IGNORE gas equation should be used to find <i>n</i> (H <sub>2</sub> )<br>ALLOW Equation 3 linked to H <sub>2</sub> : Eu > 1                                                                                                                                                                |
| (d)      | QualPrecipitates have different molar masses<br>OR<br>Precipitates have different formulae $\checkmark$ Quant<br>Equation 2 forms precipitate with $M = 186$<br>OR with formula Eu(OH)2OR<br>Equation 2 forms 1.86 g precipitateOR<br>Molar mass $M$ of precipitate = $\frac{\text{mass of precipitate}}{\text{moles precipitate}}$<br>$\text{moles Eu}$<br>$\text{OR}$ OR<br>Molar mass $M$ of precipitate = $\frac{\text{mass of precipitate}}{\text{moles Eu}}$<br>$\text{OR}$ OR<br>Molar mass $M$ of precipitate = $\frac{\text{mass of precipitate}}{\text{moles Eu}}$ | 2     | AO3.4<br>×2   | ALLOW precipitates are EuOH, Eu(OH) <sub>2</sub> Eu(OH) <sub>3</sub><br>OR precipitates have different number of OH <sup>-</sup> ions<br>ALLOW Moles OH <sup>-</sup> = $\frac{\text{mass of precipitate} - \text{mass of Eu}}{\text{molar mass of OH}^{-}}$<br>OR Moles OH <sup>-</sup> = $\frac{\text{mass of precipitate} - 1.52}{17}$ |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | AO<br>element              | Guidance                                                                                                                                                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 (a)    | $n(\text{Ba}(\text{OH})_2) = 0.150 \times \frac{250}{1000} \text{ OR } 0.0375 \text{ (mol)} \checkmark$ $Mass \text{Ba}(\text{OH})_2 = 0.0375 \times 171.3 = 6.42375 \text{ (g)} \checkmark$ $Dissolve solid in (distilled) \text{ water (less than } 250 \text{ cm}^3) \text{ in beaker } \checkmark$ $Transfer (solution) \text{ to volumetric flask}$ $AND$ $Transfer washings (from beaker) \text{ to flask } \checkmark$ $Make up \text{ to mark/up to } 250 \text{ cm}^3 \text{ with (distilled) water } \text{AND}$ $Invert \text{ flask (several times to ensure mixing)} \checkmark$                                | 5     | AO2.4<br>×2<br>AO1.2<br>×3 | <ul> <li>ALLOW ECF from incorrect n(Ba(OH)<sub>2</sub>)</li> <li>ALLOW 6.42 up to 6.42375 correctly rounded</li> <li>6.42 g subsumes 1st mark</li> <li>ALLOW conical flask for beaker</li> <li>ALLOW graduated flask</li> <li>DO NOT ALLOW round-bottom or conical flask</li> </ul> |
| (b)      | $n(Ba(OH)_{2}) = 0.150 \times \frac{23.50}{1000}$ $= 3.525 \times 10^{-3} \text{ (mol) }\checkmark$ $n(D) \text{ in } 25.0 \text{ cm}^{3} = 2 \times 3.525 \times 10^{-3}$ $= 7.05 \times 10^{-3} \text{ (mol) }\checkmark$ $n(D) \text{ in } 100 \text{ cm}^{3} = 7.05 \times 10^{-3} \times \frac{100}{25.0}$ $= 0.0282 \text{ (mol) }\checkmark$ Molar mass (D) = $\frac{3.215}{0.0282}$ = 114 (g mol <sup>-1</sup> ) $\checkmark$ Formula: = C <sub>5</sub> H <sub>9</sub> COOH<br>OR C <sub>n</sub> H <sub>2n-1</sub> : $M(C_{5}H_{9})$ = 114 – 45 = 69 $\checkmark$<br>If not stated, could be credited from structure | 7     | AO2.8<br>×4<br>AO3.2<br>×1 | Use ECF throughout<br>Intermediate values for working to at least 3 SF.<br>TAKE CARE as value written down may be<br>truncated value stored in calculator.<br>Depending on rounding, either can be credited.<br>                                                                    |

H432/03

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <i>cis</i> stereoisomers.<br>The drawn stereoisomers must have<br>• Different groups attached to each C atom of C=C<br>• Each C of C=C has the same group on the same side<br>Any 2 <i>cis</i> isomers $\checkmark \checkmark$ <i>Many possibilities, e.g.</i><br>H <sub>3</sub> C CH <sub>2</sub> CH <sub>2</sub> COOH CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH<br>H H H H H<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH H <sub>3</sub> C CH <sub>2</sub> CH <sub>2</sub> COOH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH H <sub>3</sub> C CH(CH <sub>3</sub> )COOH |       | AO3.2<br>×2   | COMMON ERRORS:<br>Up to Molar mass = 114 (1st 4 marks)<br>$M = 456 \rightarrow 3/4$ marks (mol in 100 cm <sup>3</sup> omitted)<br>$M = \frac{3.215}{7.05 \times 10^{-3}} = 456$<br>$M = 228 \rightarrow 3/4$ marks (No × 2 for n( <b>D</b> ))<br>$3.525 \times 10^{-3} \times \frac{100}{25.0} = 0.0141$<br>$M = \frac{3.215}{0.0141} = 228$<br>$M = 100.8 \rightarrow 3/4$ marks<br>23.50 instead of 25.00 and scaling by $\times \frac{100}{23.50}$ |
|          | $\begin{array}{c} C = C \\ H \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |               | $25.0 \times \frac{0.150}{1000} = 3.75 \times 10^{-3} \times 23.50$ $25.0 \times \frac{0.150}{1000} = 3.75 \times 10^{-3} \times 23.50$ $\rightarrow 2 \times 3.75 \times 10^{-3} = 7.5 \times 10^{-3} \checkmark 350$ $\rightarrow 7.5 \times 10^{-3} \times \frac{100}{23.50} = 0.0319 \checkmark 350$ $\rightarrow \frac{3.215}{0.0319} \rightarrow 100.8 \checkmark$                                                                              |
|          | ALLOW correct structural, with ' <i>cis</i> ' part displayed<br>OR skeletal<br>OR displayed formula<br>OR mixture of above as long as non-ambiguous                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |               | <b>THEN ALLOW ECF</b> for carboxylic acid closest to<br>calculated <i>M</i> (alkyl group) but must be $C_nH_{2n-1}$<br>e.g. For <i>M(alkyl)</i> = 100, ALLOW $C_4H_7$ (55)<br>For <i>M(alkyl)</i> = 411, ALLOW $C_{29}H_{57}$ (405)<br>OR $C_{30}H_{59}$ (419)                                                                                                                                                                                        |
|          | ALLOW side chains as molecular formula,<br>e.g. C <sub>3</sub> H <sub>7</sub> for (CH <sub>3</sub> ) <sub>2</sub> CH OR CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub><br>e.g. C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> for CH <sub>2</sub> CH <sub>2</sub> COOH                                                                                                                                                                                                                                                                                                                                     |       |               | <b>THEN</b> judge <i>cis</i> isomers with closest match <b>ALLOW</b> 1 mark for 2 <i>trans</i> isomers shown                                                                                                                                                                                                                                                                                                                                          |
|          | IGNORE poor connectivity to all groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |               | instead of 2 <i>cis</i> isomers <b>ECF</b> for Same error made twice.                                                                                                                                                                                                                                                                                                                                                                                 |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | AO<br>element              | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 (a)    | (Large) excess of pent-1-ene<br>OR<br>There is a (large) excess ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     | AO3.1                      | ALLOW<br>pent-1-ene concentration is (much) greater<br>OR<br>pent-1-ene has a high concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (b)      | Please refer to the marking instructions on page 6 of this mark scheme for guidance on how to mark this question.         Level 3 (5–6 marks)         Obtains a comprehensive conclusion to determine initial rate AND order AND rate constant k         There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.         Level 2 (3–4 marks)         Obtains a sound, but not comprehensive conclusion, to determine initial rate AND order         OR order AND rate constant k         OR order AND rate constant k         There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.         Level 1 (1–2 marks)         Obtains a simple conclusion to determine initial rate OR order         There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.         0 marks         No response or no response worthy of credit. | 6     | AO3.1<br>×4<br>AO3.2<br>×2 | Indicative scientific points may include:<br>Initial rate<br>• Evidence of tangent on graph drawn to line<br>at $t = 0$ s<br>AND gradient determined in range<br>$4.5 - 6.5 \times 10^{-6}$<br>• initial rate expressed as gradient value with<br>units of mol dm <sup>-3</sup> s <sup>-1</sup> ,<br>e.g. initial rate = $5.5 \times 10^{-6}$ mol dm <sup>-3</sup> s <sup>-1</sup><br>Reasoned order of I <sub>2</sub><br>Half lives<br>• Half life measured on graph OR within text<br>OR stated in range 2500 ±10 s<br>• Constant half life OR two stated half lives<br>within ±10 s<br>AND conclusion that I <sub>2</sub> is 1st order<br>OR<br>Comparison of rates from gradients<br>• Rate measured as gradient at a<br>concentration, c<br>• Rate measured at c/2<br>• c halves and rate halves<br>• so order 1<br>e.g. initial rate at c = $0.02 = 5.5 \times 10^{-6}$ mol dm <sup>-3</sup> s <sup>-1</sup><br>rate at c = $0.01 = 2.58 \times 10^{-6}$ mol dm <sup>-3</sup> s <sup>-1</sup> |

| Question | Answer                                                                                                                                                                                                                                                                                                                                    | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (c) (i   | <ul> <li>Reactants for 1st step: CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub> + I<sub>2</sub> ✓</li> <li>2 steps that add up to overall equation:</li> </ul>                                                                                                                                                               | 2     | AO2.5<br>× 2  | Determination of k with units• Rate constant k clearly linked to initial rate<br>OR half-life:<br>$k = \frac{rate}{[l_2]}$ OR $k = \frac{\ln 2}{t_{1/2}}$ • k determined correctly from measured initial<br>rate or measured half life with units of s <sup>-1</sup> ,<br>e.g. $k = \frac{5.5 \times 10^{-6}}{0.02} = 2.75 \times 10^{-4} \text{ s}^{-1}$<br>from initial rate of $5.5 \times 10^{-6}$ mol dm <sup>-3</sup> s <sup>-1</sup> OR<br>from $t_{1/2}$ of 2500 s• Typical range $2.25-3.25 \times 10^{-4}$ ALLOW mechanism for electrophilic addition shown.IGNORE state symbols |  |
|          | $CH_{2}CH_{2}CH=CH_{2} + I_{2} \rightarrow CH_{3}CH_{2}CH_{2}CHICH_{2}I \checkmark$<br>e.g.<br>$CH_{3}CH_{2}CH_{2}CH=CH_{2} + I_{2} \rightarrow CH_{3}CH_{2}CH_{2}CHICH_{2}^{+} + I^{-}$<br>$CH_{3}CH_{2}CH_{2}CHICH_{2}^{+} + I^{-} \rightarrow CH_{3}CH_{2}CH_{2}CHICH_{2}I$                                                            |       |               | Must be based on slow step, i.e. 2nd mark<br>dependent on correct slow step:<br>$CH_3CH_2CH_2CH=CH_2 + I_2$<br>IGNORE actual positioning of + charge                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|          |                                                                                                                                                                                                                                                                                                                                           |       |               | $\begin{array}{l} \textbf{ALLOW} \\ \rightarrow CH_3CH_2CH_2CHICH_2 + I  (\text{no charge}) \\ CH_3CH_2CH_2CHICH_2 + I \rightarrow \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (i       | <ul> <li>Repeat experiment with [I₂] constant/kept the same</li> <li>OR use (large) excess of I₂ ✓</li> <li>Monitor/measure/plot [CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>] over time</li> <li>OR</li> <li>Monitor/measure how [CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>] affects rate ✓</li> </ul> | 2     | AO3.4<br>×2   | ALLOW I <sub>2</sub> in (great) excess<br>ALLOW initial rates approach of running several<br>experiments with different concentrations of<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH=CH <sub>2</sub><br>i.e. Measure initial rates for each experiment                                                                                                                                                                                                                                                                                                                          |  |

|   | Question |                    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks           | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Quest    | ion<br>(i)<br>(ii) | Reduction: $Na^+ + e^- \rightarrow Na \checkmark$ Oxidation: $2N_3^- \rightarrow 3N_2 + 2e^- \checkmark$ ALLOW 1 mark for 2 correct equations but wrong way roundFIRST CHECK ANSWER ON ANSWER LINEIF mass = 34.5 (g) AND working using ideal gas equationAward 5 marks for calculationRearranging ideal gas equation $n = \frac{pV}{RT} \checkmark$ Unit conversion AND substitution into $n = \frac{pV}{RT}$ : $R = 8.314 \text{ OR } 8.31$ $V = 16(.0) \times 10^{-3}$ T in K: 290 Ke.g. $\frac{1.20 \times 10^5 \times 16.0 \times 10^{-3}}{8.314 \times 290} \checkmark$ | Marks<br>2<br>5 | _             | GuidanceALLOW multiples<br>e.g. $2Na^+ + 2e^- \rightarrow 2Na$ IGNORE state symbolsTAKE CARE as value written down may be<br>truncated value stored in calculator.IF $n = \frac{pV}{RT}$ is omitted, ALLOW when values are<br>substituted into rearranged ideal gas equation.Calculator: 0.7963302448From unrounded 0.7963302448,<br>$n(NaN_3) = 0.5308868299$                                                                                                                                  |
|   |          |                    | Calculation of n<br>$n = 0.796 \text{ (mol)} \checkmark$<br>Calculation of mass<br>$n(\text{NaN}_3) = \frac{2}{3} \times 0.796 = 0.531 \text{ (mol)} \checkmark$<br>mass NaN <sub>3</sub> = 0.531 × 65 = 34.5 (g) $\checkmark$<br>3 SF required                                                                                                                                                                                                                                                                                                                              |                 |               | mass = 0.5308868299 × 65 = 34.50764394<br>$\rightarrow$ 34.5 to 3 SF<br><b>COMMON ERROR</b><br><b>51.7 OR 51.8</b> $\rightarrow$ 4 marks (2/3 omitted<br>depending on intermediate rounding<br>0.796 × 65 = 51.7 <b>OR</b> 51.8<br><b>54.4</b> $\rightarrow$ 4 marks (inverted gas equation)<br>$n = \frac{RT}{pV} \rightarrow 1.255760417 \rightarrow 0.8371736111$<br>$\rightarrow$ 54.4 (g) CARE with intermediate rounding<br><b>81.6 OR 81.7</b> $\rightarrow$ 3 mks (as above but no 2/3) |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) (i)  | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 2.75 award 2 marks<br>$[H^+]^2 = K_a \times [HN_3]) = 2.51 \times 10^{-5} \times 0.125$ $[H^+] = \sqrt{(K_a \times [HN_3])}$ $[H^+]^2 = 2.51 \times 10^{-5} \times 0.125$ $OR [H^+] = \sqrt{(2.51 \times 10^{-5} \times 0.125)}$ $OR [H^+] = 1.77 \dots \times 10^{-3} \text{ (mol dm}^{-3)} \checkmark$ $pH = -\log 1.77 \dots \times 10^{-3} = 2.75 \text{ (Must be to 2DP)} \checkmark$ | 2     | AO2.2<br>×2   | ALLOW ECF throughoutIGNORE error with HN3 shown as NH3ALLOW pH mark by ECF<br>ONLY if $2.51 \times 10^{-5} \times 0.125$ used AND pH <7Common errors (Must be to 2 DP)<br>pH = $5.50 \rightarrow 1$ mark (No square root)[H <sup>+</sup> ] = $6.26 \times 10^{-4}$ from $\sqrt{(2.51 \times 10^{-5}) \times 0.125}$<br>pH = $3.20 \rightarrow 1$ mark[H <sup>+</sup> ] = $8.87 \times 10^{-6}$ from $\sqrt{(0.125) \times 2.51 \times 10^{-5}}$<br>pH = $5.05 \rightarrow 1$ mark |
| (ii)     | <ul> <li>Correct equation ✓</li> <li>Correct acid–base pair labels for correct equation ✓</li> <li>HN<sub>3</sub> + H<sub>2</sub>O ⇒ N<sub>3</sub><sup>-</sup> + H<sub>3</sub>O<sup>+</sup> ✓</li> <li>A1 B2 B1 A2 ✓</li> <li>OR</li> <li>A2 B1 B2 A1</li> </ul>                                                                                                                                                                                | 2     | AO1.2<br>×2   | ALLOW 1 mark for one correct acid–base pair<br>WITH correct labels<br>e.g. H <sub>2</sub> O H <sub>3</sub> O <sup>+</sup><br>WITH B1 A1<br>OR B2 A2                                                                                                                                                                                                                                                                                                                               |

| Question       | Answer                                                                                                                                                                                                                                      | Marks      | AO<br>element | Guidance                                                                                                                                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question (iii) | Answer         Structure of 2-methylbutanoic acid $\checkmark$ Structure of organic product (primary amine) $\checkmark$ CO <sub>2</sub> AND N <sub>2</sub> as products $\checkmark$ HN <sub>3</sub> +         OH         HN <sub>3</sub> + | Marks<br>3 |               | GuidanceALLOW correct structural OR skeletal<br>OR displayed formula OR mixture of the<br>above as long as non-ambiguousCommon error<br>With NH3, $\rightarrow$ CO2 + H2ALLOW ECF for equation using a different<br>amine isomer of the organic product<br>e.g. (CH3)2CHCH2NH2 |
|                |                                                                                                                                                                                                                                             |            |               | DO NOT ALLOW ECF from unbranched<br>species, e.g. CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub><br>IGNORE HN <sub>3</sub> in equation, even if missing<br>IGNORE poor connectivity to all groups                                                             |
|                |                                                                                                                                                                                                                                             |            |               |                                                                                                                                                                                                                                                                                |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | AO<br>element              | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)*     | <ul> <li>Please refer to the marking instructions on page 6 of this mark scheme for guidance on how to mark this question.</li> <li>Level 3 (5–6 marks)</li> <li>Reaches a comprehensive conclusion to determine the correct formulae of almost all of E, F, G, H, I and J</li> <li>There is a well-developed line of reasoning which is clear and logically structured.</li> <li>The information presented is relevant and substantiated.</li> <li>Level 2 (3–4 marks)</li> <li>Reaches a sound conclusion to determine the correct formulae of at least half of E, F, G, H, I and J</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</li> <li>Level 1 (1–2 marks)</li> <li>Reaches a simple conclusion to determine the correct formulae of some of E, F, G, H, I and J</li> <li>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</li> <li>0 marks No response or no response worthy of credit.</li> </ul> | 6     | AO3.1<br>×2<br>AO3.2<br>×4 | Indicative scientific points may include:<br>Identify of E, F, G, H, I and J<br>• E Cu/copper<br>• F: H <sub>2</sub> O/water<br>• G: N <sub>2</sub> /nitrogen<br>• H: CH <sub>3</sub> COCI OR CICH <sub>2</sub> CHO OR C <sub>2</sub> H <sub>3</sub> OCI<br>• I: CH <sub>3</sub> CONH <sub>2</sub> OR H <sub>2</sub> NCH <sub>2</sub> CHO<br>• J: NH <sub>4</sub> Cl/ammonium chloride<br>Examples of reasoning<br>Working<br>$n(CuO) = \frac{4.77}{(63.5 + 16)} = 0.06 \text{ (mol)}$<br>$M(E) = 3.81 \div 0.06 = 63.5$<br>$n(G) = \frac{480}{24000} = 0.02$<br>$M(G) = \frac{0.560}{0.02} = 28 \text{ (g mol}^{-1})$<br>Infrared spectrum<br>I contains<br>• C=O (~1700 cm <sup>-1</sup> )<br>• NH <sub>2</sub> (~3200-3400 cm <sup>-1</sup> )<br>Equations<br>3CuO + 2NH <sub>3</sub> $\rightarrow$ 3Cu + 3H <sub>2</sub> O + N <sub>2</sub><br>CH <sub>3</sub> COCl + 2NH <sub>3</sub> $\rightarrow$ H <sub>2</sub> NCH <sub>2</sub> CHO + NH <sub>4</sub> Cl<br>OR<br>CICH <sub>2</sub> CHO + 2NH <sub>3</sub> $\rightarrow$ H <sub>2</sub> NCH <sub>2</sub> CHO + NH <sub>4</sub> Cl |

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

**OCR Customer Contact Centre** 

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

