

GCE

Chemistry A

H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations

Annotation	Meaning
~	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

C	Question		Answer	Marks	AO element	Guidance
1	(a)	(i)	Oxidised AND nickel has lost/donated two electrons ✓	1	2.1	IGNORE reference to oxidation numbers (even if incorrect)
	(b)	(i)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 43.6 (cm ³) award 3 marks $n(Ni) = \frac{0.192}{58.7} = 3.27 \times 10^{-3} (mol) \checkmark$ $n(HCl) = 3.27 \times 10^{-3} \times 2 = 6.54 \times 10^{-3} (mol) \checkmark$ Volume HCl = $\frac{6.54 \times 10^{-3}}{0.15} \times 1000 = 43.6 (cm3) \checkmark$ 3 SF required	3	1.1×1 2.4 ×2	ALLOW 3.27 × 10 ⁻³ up to calculator value of 3.270868825 × 10 ⁻³ ALLOW 6.54 × 10 ⁻³ up to calculator value of 6.541737649 × 10 ⁻³
		(ii)	Volume H ₂ = 3.27 × 10 ⁻³ × 24000 = 78.5 (cm ³) ✓	1	2.4 ×1	ALLOW ECF from incorrect n(Ni) from (b)(i) ALLOW 78.48 (cm ³)
		(iii)	Volume is the same ✓ Mg is in excess OR Volume of H₂ depends on HCI/HCI is limiting reagent ✓	2	3.4 ×2	

Question	Answer	Marks	AO element	Guidance
(c)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) The candidate gives a clear description of all three tests with correct observations. AND Equations are mostly correct. AND Some fine detail included in answer. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) The candidate describes all three tests with correct observations. OR Describes two tests with a few omissions. AND Includes at least one correct equation. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1–2 marks) The candidate attempts to describe two tests and observations, but explanations are incomplete. OR Gives a thorough description and explanation of one of the tests and attempts on equation. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	1.2 ×2 2.7 ×2 3.4 ×2	Indicative scientific points Tests for anions Carbonate test: Add HNO ₃ (aq)/HCl(aq)/H ₂ SO ₄ (aq)/H ⁺ (aq) fizzing/forms CO ₂ (g) → Carbonate identified Sulfate test: Add Ba(NO ₃) ₂ (aq) OR BaCl ₂ (aq) White precipitate → Sulfate identified Bromide test Add AgNO ₃ (aq) Cream precipitate → Bromide identified Equations (ionic or full) IGNORE state symbols (even if wrong) Carbonate 2H ⁺ + CO ₃ ²⁻ → CO ₂ + H ₂ O OR 2H ⁺ + NiCO ₃ → Ni ²⁺ + CO ₂ + H ₂ O + CO ₂ OR 2H ⁺ + NiCO ₃ → Ni(NO ₃) ₂ + H ₂ O + CO ₂ OR 2HCl + NiCO ₃ → NiCl ₂ + H ₂ O + CO ₂ OR H ₂ SO ₄ + NiCO ₃ → NiSO ₄ + H ₂ O + CO ₂ OR Ba(NO ₃) ₂ + NiSO ₄ → BaSO ₄ + Ni(NO ₃) ₂ OR BaCl ₂ + NiSO ₄ → BaSO ₄ + NiCl ₂ Bromide Ag ⁺ + Br ⁻ → AgBr OR 2AgNO ₃ + NiBr ₂ → 2AgBr + Ni(NO ₃) ₂ Fine Detail (NOT inclusive) Sequence of tests on samples Carbonate → Sulfate → Bromide Solubile in concentrated ammonia State symbols in ionic or full equations e,g. 2H ⁺ (aq) + CO ₃ ²⁻ (aq) → CO ₂ (g) + H ₂ O(l) OR 2H ⁺ (aq) + SO ₄ ²⁻ (aq) → BaSO ₄ (s) Ag ⁺ (aq) + Br ⁻ (aq) → AgBr(s)

Q	Question		Answer		AO element	Guidance
2	(a)		(The enthalpy change) for complete combustion ✓	2	1.1 ×2	ALLOW energy change for combustion in excess oxygen OR reacts in excess oxygen OR reacts completely in oxygen OR energy released during complete combustion OR energy change for combustion in excess air IGNORE energy required
			of 1 mol (of substance) ✓			ALLOW element OR compound OR reactant DO NOT ALLOW atoms
	(b)		FIRST CHECK ANSWER ON THE ANSWER LINE If answer = – 2680 (kJ mol ⁻¹) award 4 marks If answer = (+) 2680 (kJ mol ⁻¹) award 3 marks	4		ALLOW 16700 J or 16.7 kJ up to calculator value of 16720 J (Must be at least 3 SF)
			Energy released in J OR kJ = 200 × 4.18 × 20.0 = 16720 (J) OR 16.72 (kJ) \checkmark $n(C_6H_{12}) = \frac{0.525}{84} = 0.00625 \text{ (mol)} \checkmark$		3.1 ×2	ALLOW ECF from incorrect <i>M</i> (C ₆ H ₁₂) or energy change
			Energy per mole = $\frac{16.72}{0.00625}$ OR (-)2675.2 (kJ mol ⁻¹) \checkmark $\Delta cH = -2680$ (kJ mol ⁻¹)		3.2 ×1	IF energy released above rounded to 16700, Energy per mole = (–)2672 by ECF 3 marks $\Delta cH = -2670$ to 3SF 4 marks
			Value to 3SF AND '–' sign ✓		1.2 ×1	COMMON ERROR -7.02 (kJ mol ⁻¹) award 3 marks
	(c)	(i)	% uncertainty in temp. rise = $\frac{1}{20} \times 100 = 5\% \checkmark$ % uncertainty in volume = $\frac{2}{200} \times 100 = 1\%$	2	2.8 ×2	Award 1 mark if uncertainties are given as 0.05 AND 0.01 with correct statement
			AND temp rise has greater % uncertainty \checkmark			

Question	Answer	Marks	AO element	Guidance	
(ii)	 Any two from: Heat released to the surroundings ✓ Incomplete combustion OR incomplete reaction OR not everything burns ✓ Non-standard conditions ✓ 	2	3.2 ×2	ALLOW heat loss IGNORE reference to evaporation	
(iii)	Less accurate due to greater heat losses ✓ More accurate due to smaller % uncertainty in temperature change OR mass of fuel burnt ✓	2	3.4 ×2	ALLOW less accurate due to evaporation of water ALLOW error for uncertainty ALLOW for both marks May not change as increase in temperature change OR increase in mass of fuel burned would decrease % uncertainty BUT may be outweighed by increased heat loss to surroundings OWTTE	

C	Question	Answer		AO element	Guidance	
3	(a)	Ca: metallic bonding OR giant metallic lattice ✓	5	1.1 ×2	ALLOW Metallic structure DO NOT ALLOW reference to molecules or intermolecular forces for calcium	
		Br ₂ : simple molecular OR simple covalent \checkmark			ALLOW 'are molecules'	
		Induced dipole(–dipole) forces/interactions OR London forces ✓		2.1×1	IGNORE • permanent dipole(–dipole) forces • IDID and LDF • van der Waals	
		Conductivity linked to mobile electrons In Ca electrons are mobile OR electrons are delocalised OR electrons can move AND in Br₂ charge carriers/electrons are not mobile ✓		3.2×2	DO NOT ALLOW 'free electrons' for mobile electrons	
		Melting point linked to bond strengths Metallic bonds are strong AND London forces are weak OR Metallic bonds need a large amount of energy to break AND London forces need little energy to break ✓			 ALLOW comparison, e.g. Metallic bonds are stronger than London forces OR Metallic bonds need more energy to break than London forces ✓ ALLOW intermolecular forces instead of London forces for this mark 	

Question	Answer	Marks	AO element	Guidance
(b) (i)	$\left[\begin{array}{c} Ca \end{array} \right]^{2+} 2 \left[\begin{array}{c} Br \end{array} \right]^{-}$ Ca shown with either 8 or 0 electrons AND Br shown with 8 electrons with 7 crosses and 1 dot (or vice versa) \checkmark Correct charges on both ions \checkmark	2	1.2 ×1 2.5 ×1	ALLOW separate Br-ions, i.e. $\begin{bmatrix} & & Br \\ & & Br \end{bmatrix}^{2+} \begin{bmatrix} & & Br \\ & & & Br \end{bmatrix}^{-}$ For first mark, if eight electrons are shown around Ca, the 'extra' electrons around Br must match the symbol chosen for the electrons for Na. IGNORE inner shells Circles or brackets not required
(ii)	 Atomic radius Ba has a greater atomic radius than Ca OR Ba has more shells OR Ba has more shielding ✓ Attraction Nuclear attraction is less in Ba OR (outer) electrons in Ba are less attracted (to nucleus) OR Increased distance / shielding in Ba outweighs increased nuclear charge ✓ Ionisation energy Ionisation energy of Ba is less OR easier to remove (outer) electrons in Ba ✓ 	3	1.1 ×1 2.3 ×2	Comparison required throughout ORA throughout For more shells, ALLOW higher energy level IGNORE more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell' ALLOW Ba has less nuclear pull' OR 'Ba electrons are less tightly held' IGNORE less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction' ALLOW easier to oxidise Ba

(Question		Answer	Marks	AO element	Guidance
	(c)	(i)	$Al_2Se_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2Se$	1	2.6 ×1	
		(ii)	H ₂ O has hydrogen/H-bonds (between molecules) ✓ H ₂ Se has induced dipole(-dipole) interactions OR London forces ✓	3	1.1 ×2	ALLOW permanent dipole-dipole interactions
			H-bonds are stronger (than other intermolecular forces) OR more energy needed to overcome H-bonds \checkmark		2.1 ×1	
	(d)	(i)	Sodium bromate(V) ✓	1	2.5 ×1	
		(ii)	Br is oxidised AND reduced OR Br oxidation number is increased and decreased ✓	3	1.1 ×1	ALLOW same element is both oxidised and reduced
			Br is oxidised from 0 to +5 \checkmark Br is reduced from 0 to -1 \checkmark		2.2 ×2	ALLOW 1 mark if all 3 oxidation numbers are correct (even if oxidation/reduction incorrectly assigned)

C	Question		Answer	Marks	AO element	Guidance
4	(a)		 Bond angle 112–120° ✓ Explanation Around N, there is a double bond, a single bond and a lone pair ✓ Electron pairs repel ✓ Seen anywhere 	3	1.1 ×1 2.1 ×2	ALLOW 3 bonding pairs and 1 lone pair OR 2 bonding region and 1 lone pair ALLOW bonding pairs or lone pairs
	(b)	(i)	$(K_{\rm c} =) \frac{[\rm NO]^2[\rm Cl_2]}{[\rm NOCl]^2} \checkmark$	1	1.2 ×1	DO NOT ALLOW curved brackets
		(ii)	From equation, $n(NO)$ is $2 \times n(Cb)$ OR Ratio NO:Cl ₂ is 2:1	1	3.1 ×1	Response MUST refer to stoichiometry of equation and compare molar ratio of both NO and Cl ₂
		(iii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = $\sqrt{1.31}$ = 1.1 (mol dm ⁻³) award 2 marks $[NOCl]^2 = \frac{[NO]^2[Cl_2]}{K_c} OR \frac{0.34^2 \times 0.17}{0.015} OR 1.3 \checkmark$ $[NOCl] = \sqrt{1.3} = 1.1 \text{ (mol dm}^{-3}) \checkmark$	2	2.6 ×2	ALLOW 1.1 up to calculator value of 1.144552314 ALLOW ECF from inverted <i>K</i> _c expression in b(ii) 2.9(478) x 10 ⁻⁴ 1 mark 0.017(1691584)2 marks
		(iv)	As T increases, equilibrium (position) shifts to right AND (forward) reaction is endothermic \checkmark Equilibrium concentration of NO increases \checkmark	2	2.5 ×2	ALLOW 'favours the right', for 'shifts to right' ALLOW moves to right in endothermic direction

0	Question		Answer		AO element	Guidance	
5	(a)		C , E AND F $\checkmark \checkmark$ Three correct alcohols \rightarrow 2 marks Two correct alcohols \rightarrow 1 mark	2	1.1 ×1 2.1 ×1	If >2 alcohols are shown lose 1 mark for each incorrect response	
	(b)		$(CH_3CH_2CHOHCH_3 +) 6O_2 \rightarrow 4CO_2 + 5H_2O \checkmark$	1	2.6 ×1	DO NOT ALLOW [O]	
	(c)		2-methylbutan-2-ol ✓	1	1.2 ×1		
	(d)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF atom economy = 46.1(%) award 2 marks Atom economy $= \frac{M_r \text{ of } (CH_3)_2 CHCH_2 CH_2 OH}{M_r (CH_3)_2 CHCH_2 CH_2 OH + M_r \text{ NaBr}} \times 100$ OR = $\frac{88}{190.9} \times 100 \checkmark$	2	1.2 ×1	ALLOW $\frac{M_{\rm r} (\rm CH_3)_2 CHCH_2 CH_2 OH}{M_{\rm r} (\rm CH_3)_2 CHCH_2 CH_2 Br + M_{\rm r} NaOH} \times 100$ ALLOW 46% up to calculator value (46.09743321)	
			= 46.1(%) ✓		2.2 ×1	ALLOW ECF from incorrect <i>M</i> ^r values	

Question	Answer	Marks	AO element	Guidance
(ii)	ANNOTATE ANSWER WITH TICKS AND CROSSES 	3	2.5 ×1	 1st curly arrow must go to the C of C–Br AND start from, OR be traced back to any point
	dipole shown on C–Br bond, C⁵⁺ and Br⁵⁻,		1.1 ×1	across width of lone pair on O of OH-
	AND curly arrow from C–Br bond to Br atom \checkmark (CH ₃) ₂ CHCH ₂ — C_{H}^{O} $B_{r}^{\delta-}$			• OR start from – charge on O of -OH ion (COH OH OH OH (Lone pair NOT needed if curly arrow shown from O-)
	IGNORE incorrect R groups for curly arrow marks IGNORE presence of Na ⁺ but OH ⁻ needed i.e. Na ⁺ OH ⁻ can be allowed if criteria met			2nd curly arrow must start from, OR be traced back to, any part of C–Br bond and go to Br $C \xrightarrow{\beta} C \xrightarrow{\beta} C \xrightarrow{\beta} C$
	Products 1 mark			ALLOW S_N 1 mechanism for 2 curly arrow marks
	correct organic product AND Br ⁻ ✓ H (CH ₃) ₂ CHCH ₂ —C—OH + Br ⁻ H IGNORE presence of Na ⁺ but Br ⁻ needed i.e. Na ⁺ Br ⁻ can be allowed BUT NaBr does NOT show Br ⁻		2.5 ×1	First mark Dipole shown on C–Br bond, C^{δ_+} and Br^{δ} , AND curly arrow from C–Br bond to Br atom \checkmark $(CH_3)_2CHCH_2 \longrightarrow C^{\delta_+} \oplus Br^{\delta} \longrightarrow (CH_3)_2CHCH_2 \oplus C^{\delta_+} \oplus Br^{-}$ Second mark Curly arrow from OH- AND to correct carbocation
	NOTE : curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows			

H032/02

(Question		Answer	Marks	AO	Guidance
					element	
		(iii)	Nucleophilic substitution ✓		1.1 ×1	$(CH_3)_2CHCH_2 \xrightarrow{H} (CH_3)_2CHCH_2 \xrightarrow{H} (CH_$
		()				
	(e)		Rate slower with chloroalkane ORA ✓	2	3.1 ×1	IGNORE reference to bond polarity
			C–C l bond is stronger than C–Br bond OR C–C l bond has greater bond enthalpy OR more energy needed to break C–C l bond \checkmark		2.5 ×1	

Question	Answer	Marks	AO element	Guidance
(f)	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) The candidate gives thorough explanations of both spectra, and correctly identifies X and Y with a correct equation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND Attempts a feasible structure based on deduction from correct Mr. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1–2 marks) The candidate gives a simple description based on at least two of the main scientific points. OR Gives a thorough description and explanation of one of the scientific points. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6	2.5 ×1 3.1 ×2 3.2 ×3	 Indicative scientific points LOOK AT THE SPECTRA for labelled peaks <u>Mass Spectrum</u> M⁺ or molecular ion of 86 m/z = 43 shows CH₃CO⁺ OR C₃H₇⁺ IR spectrum IR shows no broad absorption at 2500–3300 cm⁻¹ so no O–H bond AND not a carboxylic acid IR shows absorption at 1700 cm⁻¹ for C=O bond OR indicates a ketone/aldehyde present Identification and Equation X must be a secondary alcohol, since refluxing a secondary alcohol with acidified potassium dichromate (VI) forms a ketone OR primary alcohol → carboxylic acid AND tertiary alcohol would not be oxidised. X is (CH₃)₂CHCHOHCH₃ OR compound E OR 3-methylbutan-2-ol Y is (CH₃)₂CHCOCH₃ OR 3-methylbutan-2-one Equation (CH₃)₂CHCHOHCH₃ + [O] → (CH₃)₂CHCOCH₃ + H₂O

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

