

AS LEVEL

Examiners' report

CHEMISTRY A

H032 For first teaching in 2015

H032/02 Summer 2018 series

Version 1

www.ocr.org.uk/chemistry

Contents

Introduction	3
Paper H032/02 series overview	4
Question 1(a)	5
Question 1(b)	5
Question 1(c)(i)	6
Question 1(c)(ii)	7
Question 1(c)(iii)	7
Question 1(d)(i)	8
Question 1(d)(ii)	9
Question 2(a)	9
Question 2(b)	10
Question 2(c)(i)	10
Question 2(c)(ii)	10
Question 3(a)(i)	11
Question 3(a)(ii)	11
Question 3(b)(i)	12
Question 3(b)(ii)	12
Question 3(c)	13
Question 3(d)(i)	13
Question 3(d)(ii)	14
Question 4(a)(i)	14
Question 4(a)(ii)	15
Question 4(b)	15
Question 4(c)	16
Question 5(a)(i)*	18
Question 5(a)(ii)	20
Question 5(b)	21
Question 6(a)	22
Question 6(b)(i)	22
Question 6(b)(ii)	23
Question 6(c)(i)	23
Question 6(c)(ii)	24
Question 7*	25

Introduction

Our examiners' reports are produced to offer constructive feedback on candidates' performance in the examinations. They provide useful guidance for future candidates. The reports will include a general commentary on candidates' performance, identify technical aspects examined in the questions and highlight good performance and where performance could be improved. The reports will also explain aspects which caused difficulty and why the difficulties arose, whether through a lack of knowledge, poor examination technique, or any other identifiable and explainable reason.

Where overall performance on a question/question part was considered good, with no particular areas to highlight, these questions have not been included in the report. A full copy of the question paper can be downloaded from OCR.

Paper H032/02 series overview

H032/02 is one of the two examination components for the new revised AS Level examination for GCE Chemistry A. This synoptic depth in chemistry paper links together content from all four modules. To do well on this paper, candidates need to be comfortable applying their knowledge and understanding to unfamiliar contexts and be familiar with a range of practical techniques.

Candidates who did well on this paper generally did the following:

- Performed standard calculations following the required rubric (e.g. clear working, units, significant figures): 1(c)(i), burette readings; 1(c)(ii), calculating the percentage uncertainty in a titre; 1(d)(i), calculating the molar mass from titration values; 3(c), bond enthalpies; 4(a)(ii), calculating the energy released; 5(a)(ii), calculating the mass of a reaction given the percentage yield; and 5(b), drawing and calculating a tangent.
- Produced clear and concise responses for Level of Response questions: 5(a)(i) and 7.
- Drew clear diagrams for organic structures: 1(d)(ii), 6(b)(ii), 6(c)(i) and 7.
- Constructed and balanced equations for unfamiliar reactions: 2(c)(ii).
- Applied knowledge and understanding to questions set in a novel context.

Candidates who did less well on this paper generally did the following:

- Found it difficult to apply what they had learnt in practical situations. It was clear in 5(a)(i) that
 most candidates were not prepared to draw the practical equipment that they had used in the
 PAGs. Candidates had obviously revised the required reactions and wrote detailed
 descriptions of the reaction being carried out, but this was not what the question was asking of
 them.
- Produced responses that lacked depth: 4(c), 5(a)(i), 7. Question 5(a)(i) had relevant information that the candidates could use to answer the question in more depth, such as density of the product and boiling point, but this was often ignored. For question 7, many candidates did not use the mass spectrum data to aid their deduction for the correct structure.
- Showed poor setting out of unstructured calculations, e.g. 1(d)(i), 4(a)(ii).
- Showed poor presentation of observations and data in an appropriate format (Assessment Objective 1.2, 3.1, 3.2). e.g. 1(c)(i), 7.
- Lacked precision in balancing equations, particularly 2(c)(ii), 3(a)(i) and 6(c)(i) balancing the equation with *n*.

There was no evidence that any time constraints had led to a candidate underperforming and scripts where there was no response to the final question also had large sections of the paper which had not been tackled.

Question 1(a)

1 A student carries out a titration to determine the molar mass and structure of a weak acid A.

The student follows the method below.

- Dissolve a weighed mass of A in 100 cm³ of distilled water and make the solution up to 250 cm³ in a beaker.
- Add the solution of **A** to a burette.
- Titrate the solution of **A** with a standard solution of sodium hydroxide, NaOH.
- (a) What is meant by the term standard solution?

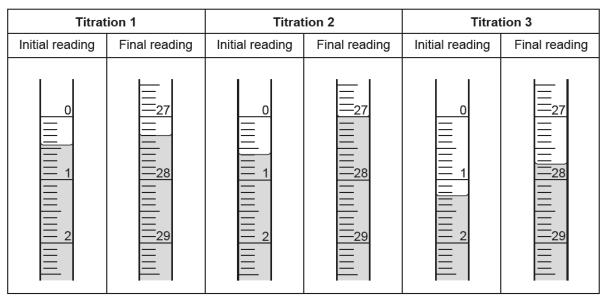
......[1]

Many candidates gave a good description of standard conditions or stated 1 mol dm⁻³, but that did not answer the question so no marks could be credited.

Question 1(b)

(b) Sodium hydroxide is an alkali.

What is meant by the term alkali?


......[1]

Many candidates stated a Brønsted–Lowry definition or gave pH values. Of the candidates that did mention OH⁻ ions, most did not state 'releases' OH⁻ ions in solution, although they were credited with the mark.

Question 1(c)(i)

(c) The student carries out a trial, followed by three further titrations. The diagram shows the initial and final burette readings for the three **further** titrations.

The student measures all burette readings to the nearest 0.05 cm³.

(i) Record the student's readings and the titres in the table below.

Calculate the mean titre, to the nearest $0.05\,\text{cm}^3$, that the student should use for analysing the results.

	Titration 1	Titration 2	Titration 3
Final reading/cm ³			
Initial reading/cm ³			
Titre/cm ³			

mean titre = cm³ [4]

Most candidates were able to accurately record the burette readings and made the correct subtractions. Despite the examination question requesting the mean titre to be recorded to the accuracy of the burette, many candidates did not do this. A common error was taking a mean of all three readings instead of only the concordant results; this led the candidates to give an answer of 26.58 which lost them 2 marks.

Question 1(c)(ii)

(ii) The uncertainty in each burette reading is ± 0.05 cm³.

Calculate the percentage uncertainty for the titre in Titration 1.

percentage uncertainty = % [1]

A good attempt by many candidates but some did not know how to calculate this or did not multiply by 2.

Question 1(c)(iii)

(iii) The student realised that the solution of A had not been prepared correctly.

How should the student have made up the solution?

......[1]

Although there were some excellent descriptions of the correct processes, such as inverting the apparatus to ensure mixing and then making the solution up to the mark, many candidates could not name a volumetric flask.

Question 1(d)(i)

- (d) A student repeats the titration to determine the molar mass and structure of A.
 - The student prepares a 250.0 cm³ solution from 1.513 g of **A**.
 - The solution of A is added to the burette and titrated with 25.0 cm³ volumes of 0.112 mol dm⁻³ NaOH(aq).
 - 1 mol of A reacts with 2 mol of NaOH.
 - The student obtains a mean titre of 27.30 cm³.
 - (i) Calculate the molar mass of A from these results.

Give your answer to the nearest whole number.

Show your working.

molar mass of $A = \dots$ gmol⁻¹ [4]

This was a good discriminator. Many candidates were credited the first two marks, and higher ability candidates went on to obtain 3 or 4 marks. Common errors were not rounding to a whole number at the end and not scaling up by 250/27.30. Many candidates did not scale up at all, obtaining an answer of 1081, or merely multiplied by 250/25 and obtained a molar mass of 108.

Question 1(d)(ii)

(ii) A is an organic acid, containing C, H and O only. One molecule of A contains two COOH groups.

Suggest the structure of A.

[1]

Most candidates that obtained a sensible value for the previous question managed to draw a creditable structure. Allowing error carried forward meant that feasibly derived structures could be credited a mark.

Question 2(a)

- 2 Sodium sulfide, Na_2S , is an ionic compound of sodium, Na, and sulfur, S.
 - (a) Draw a 'dot-and-cross' diagram to show the bonding in sodium sulfide.

Show outer electrons only.

The majority of candidates obtained full marks on this question. The most common errors were incorrect charges or covalent structures.

Question 2(b)

(b) The table below compares the properties of sodium sulfide, sodium and sulfur.

Complete the table.

		Sodium sulfide	Sodium	Sulfur
Melting point/°C		1180	98	113
Type of structure (giant or simple)				
Electrical conductivity (good or poor)	solid			
	liquid			

[3]

The majority of candidates obtained 2 or 3 marks on this question. Many candidates seemed unaware that sodium was a metal.

Question 2(c)(i)

- (c) Selenium is in the same group of the periodic table as sulfur.
 - (i) Complete the full electron configuration of a selenium atom.
 - 1s²[1]

Most candidates answered this correctly. The most common error seen was 4p⁶ instead of 4p⁴

Question 2(c)(ii)

(ii) Sodium selenide reacts with hydrochloric acid to form a toxic gas, **B**, with a relative molecular mass of 81.0.

Identify gas **B** and write an equation for this reaction.

Gas **B**

The majority of candidates obtained 1 or 2 marks on this question. The most common errors seen were identifying the gas as H_2S or incorrect balancing.

- 3 This question is about halogens.
 - (a) Bromine is used to extract iodine from a solution containing iodide ions.
 - (i) Write an ionic equation for the reaction.

......[1]

Around 50% of candidates answered this correctly. The most common error was not balancing the equation, and many did not know what an ionic equation was.

Question 3(a)(ii)

(ii) Explain why iodine is less reactive than bromine.

[3]

This question was answered well by most candidates, although some omitted the word 'nucleus' when explaining attracting electrons, or answered in terms of losing electrons, and did not have the final marking point credited.

Exemplar 1

Indine is less reactive than Broomine because it does not accept electrons as carily of his in because it her a larger atomic redies so the alteration from He moleys on electron is preaker It is also subject to mart electron shielding as it has mare shells on Aucleor merry metry His also decreases attract so it down gein electrons or easily

This candidate was credited all three marks. Some candidates managed to be credited for all 3 marks in one short sentence that covered all 3 marking points.

Question 3(b)(i)

- (b) Iodine can be used for the small-scale purification of drinking water.
 - (i) Iodine reacts with water as shown below.

$$I_2 + H_2 O \Longrightarrow HI + HIO$$

Using oxidation numbers, explain why this reaction is a disproportionation.

[3]

Most candidates were aware of disproportionation but lost marks by not stating the species or whether the process was oxidation or reduction.

Exemplar 2

(i)	lodine reacts with water as shown below.
	$I_2 + H_2 O \Longrightarrow HI + HIO$
	Using oxidation numbers, explain why this reaction is a disproportionation.
	Disproportionation is where the same dement is cost oxidured
	and reduced in the same reaction lative is reduced the
	to form HI and oridised (6+1) in HIO
	4
	[3]

Here the candidate has lost a mark for not stating the initial oxidation number of elemental iodine as 0.

Question 3(b)(ii)

(ii) Chlorine is used to purify water on a large scale.

State one disadvantage of using chlorine for the purification of drinking water.

.....

.....[1]

The majority of candidates stated that chlorine is toxic or forms carcinogens, although some stated that chlorine is a carcinogen which was not credited.

(c) Hydrogen reacts with chlorine to form hydrogen chloride, HC*l*:

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ $\Delta H = -184 \text{ kJ mol}^{-1}$

 Table 3.1 shows bond enthalpies.

Bond	Bond Enthalpy/kJmol ⁻¹
H–H	+436
C <i>l</i> -C <i>l</i>	+243

Calculate the bond enthalpy for the H-Cl bond from the information above.

bond enthalpy = kJmol⁻¹ [2]

Most candidates made a good attempt at this question. The most common mistake was to use the wrong sign when incorporating the enthalpy change into the calculation, or not to incorporate it at all.

Question 3(d)(i)

- (d) 'Enthalpy change of vaporisation' is the enthalpy change when one mole of a substance changes from a liquid to a gas at its boiling point.
 - (i) Write an equation, including state symbols, to represent the enthalpy change of vaporisation of bromine.

.....[1]

A good attempt by many candidates but some lost marks by having the wrong state of bromine, even though the question stated it was a liquid changing to a gas. Many added water or oxygen, some confused the equation with bond enthalpy and answers such as $Br_{2(1)} \rightarrow 2Br_{(g)}$ were commonly seen.

13

Question 3(d)(ii)

(ii) Suggest whether the enthalpy change of vaporisation of bromine is exothermic or endothermic.

Explain your answer.

......[1]

The majority of candidates answered this question incorrectly. Only 10% of candidates mentioned intermolecular/London forces. Most stated 'exothermic' or described breaking covalent bonds.

Question 4(a)(i)

4 The reaction of ammonia, NH₃, with oxygen to form nitrogen monoxide, NO, is an important industrial process.

The equation for this reaction is shown in equilibrium 4.1 below.

 $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ $\Delta H = -905 \text{ kJ mol}^{-1}$ Equilibrium 4.1

- (a) The forward reaction in equilibrium 4.1 converts NH₃ into NO.
 - (i) Complete the enthalpy profile diagram for this reaction.

On your diagram:

- Label the activation energy, E_a
- Label the enthalpy change of reaction, ΔH
- Include the formulae of the reactants and products.

Progress of reaction

[2]

Most candidates were able to gain the first mark, but many lost the second mark by putting a double headed arrow or $-\Delta H$.

Question 4(a)(ii)

(ii) 5.10 tonnes of NH_3 are converted into NO.

Calculate the energy released, in kJ, for this conversion.

Give your answer in standard form and to an appropriate number of significant figures.

energy released = kJ [4]

Most candidates were able to convert from tonnes to moles and then went on to complete the majority of the calculation steps. Many omitted to divide by 4 and were credited 3 marks. Some candidates lost marks by not stating the answer to standard form or quoted their answer to more than 3 significant figures. A number of candidates attempted to use $Q = mc\Delta T$ and did not get very far in the calculation.

Question 4(b)

(b) Write an expression for the equilibrium constant, K_c , in equilibrium 4.1.

Generally, this question was well answered with only a small proportion of candidates adding the values together instead of multiplying.

Question 4(c)

- (c) Predict the conditions of temperature and pressure for a maximum equilibrium yield of nitrogen monoxide in equilibrium 4.1.
 - Explain your prediction in terms of le Chatelier's principle.
 - State and explain how these conditions could be changed to achieve a compromise between equilibrium yield, rate and other operational factors.

Most candidates answered this question very well, with the most common mark being 4/5. Many candidates put a lot of effort into explaining, in depth, Le Chatelier's principle, which was not required. The first three marking points were credited to most candidates. Responses were confident in their descriptions of equilibrium shifts and many candidates then went on to qualify their answers with operational factor considerations and/or rate. The explanation for pressure was described less commonly than temperature and many candidates did not appreciated that increased rate would lead to a decreased equilibrium yield.

Exemplar 3

(c) Predict the conditions of temperature and pressure for a maximum..equilibrium yield of nitrogen monoxide in equilibrium 4.1. 制 Explain your prediction in terms of le Chatelier's principle. ٠ State and explain how these conditions could be changed to achieve a compromise • between equilibrium yield, rate and other operational factors. He Shi mum low わ He. ſ ĸ αικίλο $\overline{}$ VORTION because Dυ eх SD DOSITION Wesser ? as D le llease DIPESSURE n 1/0 ۵٩

WVAAQa MOVE i-R MINIMISE chan can maximum

SD

M and higher temperature ave USPC DIMPO 00 to indease it rafe VQCI SD cis therword reat 5 pressure is also used nigher ot. Indrase Slighty Sow it is dangenus too high pressure CD Wall satery wot DWMote an tor doesnot

This candidate scored all five marks for this well-reasoned approach to the question.

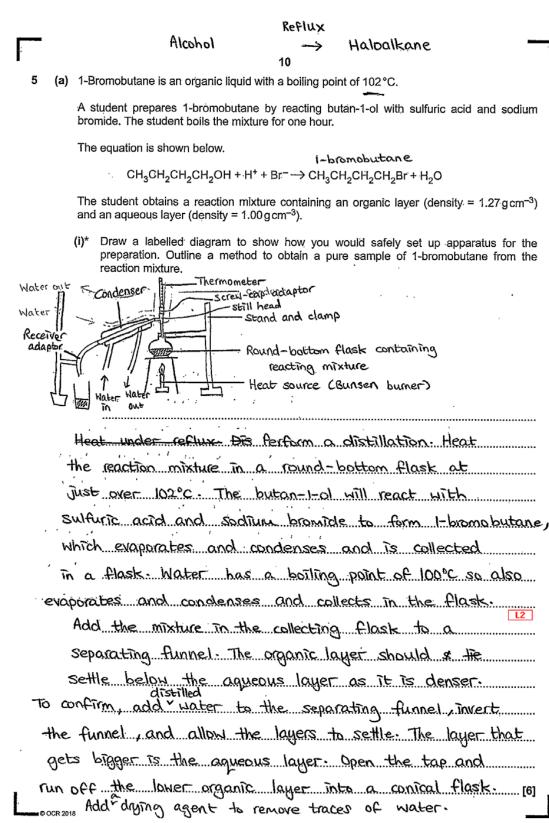
Question 5(a)(i)*

5 (a) 1-Bromobutane is an organic liquid with a boiling point of 102°C.

A student prepares 1-bromobutane by reacting butan-1-ol with sulfuric acid and sodium bromide. The student boils the mixture for one hour.

The equation is shown below.

 $CH_3CH_2CH_2CH_2OH + H^+ + Br^- \rightarrow CH_3CH_2CH_2CH_2Br + H_2O$


The student obtains a reaction mixture containing an organic layer (density = 1.27 g cm^{-3}) and an aqueous layer (density = 1.00 g cm^{-3}).

(i)* Draw a labelled diagram to show how you would safely set up apparatus for the preparation. Outline a method to obtain a pure sample of 1-bromobutane from the reaction mixture.

[6]

Candidates were not prepared to answer this type of question and the diagrams were hard to give credit to. Many had significant safety implications such as open beakers of butan-1-ol being heated by a Bunsen burner. Most mis-read the question and just outlined the method for purification and struggled to recall the practical details. Very few candidates mentioned the use of anhydrous salts, referring instead to 'boiling off' the water.

Exemplar 4

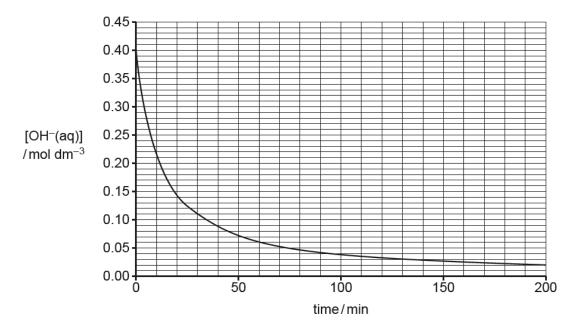
This candidate was credited 4 marks for this level 2 answer. Although they have drawn distillation apparatus instead of reflux, they have considered the boiling point of the product, detailed using a separating funnel, a drying agent and that the lower organic layer would be drawn off first.

Question 5(a)(ii)

(ii) The student used 0.150 mol of butan-1-ol. The student obtained a 61.4% percentage yield of 1-bromobutane.

Calculate the mass of 1-bromobutane obtained.

Give your answer to three significant figures.


mass = g [2]

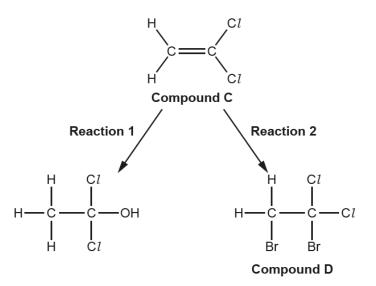
This question was well answered, but a significant number of candidates incorrectly used the Mr of butan-1-ol when calculating the mass of 1-bromobutane.

Question 5(b)

(b) A student investigates the rate of reaction of 1-bromobutane with aqueous hydroxide ions.

The graph shows how the hydroxide ion concentration, $[OH^{-}(aq)]$, changes during the reaction.

Using the graph, calculate the rate of reaction, in mol dm⁻³min⁻¹, at 30 minutes.


Show your working on the graph and in the space below.

rate of reaction = mol dm⁻³ min⁻¹ [2]

Most candidates knew they had to draw a tangent to the curve but calculating the gradient led to careless errors. Many drew tiny triangles and mis-read readings of coordinates. It is far easier, and more accurate, to use large triangles using the axes for coordinates. Lower ability candidates just interpolated the graph at 30s and were not credited marks for this.

Question 6(a)

6 Two reactions of compound **C** are shown in the flowchart below.

(a) State the reagents and conditions for reaction 1.

......[1]

Many candidates knew the answer to this question but forgot that water must be in the gaseous state. There were numerous responses stating nickel as the catalyst, but most knew that an acid catalyst was required.

Question 6(b)(i)

- (b) In reaction 2, compound C reacts with bromine to form compound D.
 - (i) Give the systematic name of compound D.

.....[1]

This question was generally well answered, although some candidates made careless mistakes such as not writing -di or writing 1,2-dibromo-1-dichloroethane

Question 6(b)(ii)

(ii) Outline the mechanism for reaction 2.

Include curly arrows, charges and relevant dipoles.

[3]

Many candidates gained all three marks on this question and the diagrams were clear and easy to read. Lower ability candidates had incorrect dipoles or curly arrows that could not be traced back to the correct origin. Candidates should be encouraged to consider what the arrows mean rather than memorising mechanisms with no understanding.

Question 6(c)(i)

- (c) Compound C forms an addition polymer E.
 - (i) Write a balanced equation for this reaction.

Show displayed formulae.

Most candidates correctly drew the repeat unit and were credited with one mark, but many placed the *n* position in the wrong place on the left-hand side of the equation or forgot to write it in at all.

Question 6(c)(ii)

(ii) State **one** advantage and **one** disadvantage of using combustion as a method for the disposal of waste polymer **E**.

dvantage	
ů –	
isadvantage	
	[2]

With all the media interest in plastic pollution this question was answered well, although many gave the answer 'quick and efficient' as an advantage which was not credited. Candidates should beware of vague statements such as these. Many wrote 'harmful' instead of toxic, or 'bad for the environment' instead of being specific about the environmental issue.

Question 7*

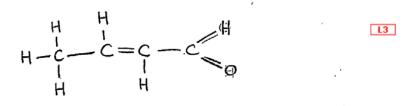
7* Compound F is a *trans* stereoisomer which is a useful intermediate in organic synthesis.
The results of elemental and spectral analysis of compound F are shown below.
Percentage composition by mass: C, 68.6 %; H, 8.6 %; O, 22.8 %.

Item removed due to third party copyright restrictions

Item removed due to third party copyright restrictions

In the mass spectrum, the peak with the greatest relative intensity is caused by the loss of a functional group from the molecular ion of compound F.

Determine the structure of compound F.


Explain your reasoning and show your working.

[6]

This question was a good discriminator. Most candidates were able to deduce the empirical formula and the C=O peak on the IR spectrum. However, many mistook the C-H peaks around 3000 cm⁻¹ for an alcohol O-H peak or assumed from the empirical formula that it was an alcohol so made the spectra 'fit' their hypothesis. At AS, the exposure of candidates to IR and MS spectra is not as comprehensive as in the second year of A Level and this was evident. There was very little annotation of the spectra and candidates should be encouraged to do this as it is helpful to them in their deductions (and to the examiners for crediting marks). Analysis of the IR spectrum was much more detailed than the mass spectrum. Most candidates just referred to the molecular ion peak and made no attempt, or an incorrect attempt, at discerning the peak at 41. Those that did quickly realised what the structure was and gained 5 or 6 marks. Some candidates, despite ascertaining that a *trans* stereoisomer should be drawn, drew the *cis* version instead.

Exemplar 5

H O H In the mass spectrum, the peak with the greatest relative intensity is caused by the loss of a functional group from the molecular ion of compound F. Determine the structure of compound F. H H H H H H H H H H Explain your reasoning and show your working.
C:H:O = 68.6: 8.6: 22.8
12 1 16
= 5-716: 8-6 : 1-425
= 4-011: 6-03: 1
Empirical formula of compound F is C4H60.
The Mt peak on mass spectrum that an mlz value of 70,
so the molecular mass of compound F is 70.9 mol-',
So the molecular formula of compound F is C4H60.
The infrared spectrum shows an absorbance peak at in
the range 1630-1820cm-1, indicating the presence of
a C=O bond. There is no absorbance peak in the range
2500-3300cm-1 so there is no O-H bond, so compound F
is not a carboxylic acid. Compose The mass spectrum
shows a fragmentation peak at 41 m/z, indicating the
presence of a CH3CHCH+ fragment from the loss of [6]
a CHO functional group. Compound F is an aldehyde.
It is a trans is stereoisomer, so the hydrogens attached
to the carbons on the double bond are opposite each other.

This candidate has very logically worked through all the information provided and has come up with the correct structure from the deductions.

Exemplar 6

Explain your reasoning and show your working. 8.6 2.8 58.6 16 1.425 em Mul 1 Ω H6 ×I tormula = GHAGHO. Ł -> Mal PROK peenin. INNUSS n → Peak at 1630-1820mindicates the presence of a C=0 group → Peak at 1620 → 1680mindicates the presence of ou C=c group. IR Spectrum L2 michure ٨.

Like most candidates, the crucial information about F being a *trans* isomer was not picked up so they drew the double bond in the wrong place.

Copyright acknowledgements

Q7, graph 1

© SDBSWeb : <u>https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi</u> (National Institute of Advanced Industrial Science and Technology, accessed 31 January 2017).

Q7, graph 2

© SDBSWeb : <u>https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi</u> (National Institute of Advanced Industrial Science and Technology, accessed 31 January 2017).

Supporting you

For further details of this qualification please visit the subject webpage.

Review of results

If any of your students' results are not as expected, you may wish to consider one of our review of results services. For full information about the options available visit the <u>OCR website</u>. If university places are at stake you may wish to consider priority service 2 reviews of marking which have an earlier deadline to ensure your reviews are processed in time for university applications.

activeresults

Active Results offers a unique perspective on results data and greater opportunities to understand students' performance.

It allows you to:

- Review reports on the **performance of individual candidates**, cohorts of students and whole centres
- Analyse results at question and/or topic level
- **Compare your centre** with OCR national averages or similar OCR centres.
- Identify areas of the curriculum where students excel or struggle and help **pinpoint strengths and weaknesses** of students and teaching departments.

http://www.ocr.org.uk/administration/support-and-tools/active-results/

Attend one of our popular CPD courses to hear exam feedback directly from a senior assessor or drop in to an online Q&A session.

https://www.cpdhub.ocr.org.uk

We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print

OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by OCR. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

This resource may be freely copied and distributed, as long as the OCR logo and this small print remain intact and OCR is acknowledged as the originator of this work.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at: resources feedback@ocr.org.uk.

OCR acknowledges the use of the following content: Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Looking for a resource?

There is now a quick and easy search tool to help find **free** resources for your qualification:

www.ocr.org.uk/i-want-to/find-resources/

www.ocr.org.uk

OCR Customer Contact Centre

General qualifications

Telephone 01223 553998 Facsimile 01223 552627

Email general.qualifications@ocr.org.uk

OCR is part of Cambridge Assessment, a department of the University of Cambridge. For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

© **OCR 2018** Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. Registered company number 3484466. OCR is an exempt charity.

