

Sample Assessment Materials September 2007

GCE Chemistry

Edexcel Advanced Subsidiary GCE in Chemistry (8CH01) First examination 2009

Edexcel Advanced GCE in Chemistry (9CH01) First examination 2010

A PEARSON COMPANY

Edexcel GCE e-Spec

Your free e-Spec

This specification comes with a free e-Spec, Edexcel's electronic version of the specification. You will find the e-Spec disc inside the Specification book for this qualification.

Everything you need in one CD

The e-Spec provides a range of useful resources including:

- A Senior Examiner explaining the changes to the new specification
- A customisable student guide to help recruit students
- A course planner to make it easy to plan delivery
- Links to sample assessment materials so you can see what is expected
- Information on the products and services provided by Edexcel to support the specification.

Easy-to-use

Just click on the walkthrough to see how easy and useful the e-Spec is and get more out of this specification today.

Contents

Introduction	3
Sample question papers	5
Unit 1: The Core Principles of Chemistry	7
Unit 2: Application of Core Principles of Chemistry	35
Unit 4: General Principles of Chemistry I	63
Unit 5: General Principles of Chemistry II	
Sample mark schemes	123
General marking guidance	125
Unit 1: The Core Principles of Chemistry	127
Unit 2: Application of Core Principles of Chemistry	143
Unit 4: General Principles of Chemistry I	159
Unit 5: General Principles of Chemistry II	179
	Introduction Sample question papers Unit 1: The Core Principles of Chemistry Unit 2: Application of Core Principles of Chemistry Unit 4: General Principles of Chemistry I Unit 5: General Principles of Chemistry II Sample mark schemes General marking guidance Unit 1: The Core Principles of Chemistry Unit 2: Application of Core Principles of Chemistry Unit 4: General Principles of Chemistry I Unit 4: General Principles of Chemistry I Unit 5: General Principles of Chemistry I

A Introduction

These sample assessment materials have been prepared to support the specification.

Their aim is to provide the candidates and centres with a general impression and flavour of the actual question papers and mark schemes in advance of the first operational examinations.

B Sample question papers

Unit 1: The Core Principles of Chemistry	7
Unit 2: Application of Core Principles of Chemistry	35
Unit 4: General Principles of Chemistry I	63
Unit 5: General Principles of Chemistry II	95

Centre No.			Pape	r Refei	ence			Surname		Initia	l(s)
Candidate No.		6 C	H	0	1	/	1	Signature			
	Paper Reference(s) 6CH01/1	_							Examin	ner's use	e only
	Edex			E							
									Team Lea	ader's u	se only
	Chemis	v									
	Advanc				•					Question Number	Leave Blank
	Unit 1: T	he Cor	e P	rino	cipl	es	of C	Chemistry		1	
									Ī	2	
	Sample A	ssessme	ent N	Aat	eria	1				3	
	Time: 1 h	our 15 r	ninı	ıtes						4	
										5	
	Materials require	ed for examin	nation	. Ito		cluded	l with	question papers		6	
	1811			INI	11				-	7	
									-	8	
									-	9	
Instructions to Ca									_	10	
In the boxes above, w Check that you have	the correct question	on paper.							ire.	11	
Answer ALL the que Some questions mus									-	12	
through the box (\textcircled{B}) Do not use pencil. U			er wit	h a cr	oss (Þ	록).			-	13	
-									ŀ	14	
Information for C The marks for indivi		the parts of	questi	ons a	re sho	wn in	round	brackets: e.g. (2)	.	15 16	
There are 19 questio There are 28 pages in							is 80		-	10	
Candidates may use		-	. 0							17	
Advice to Candida									_	10	
Quality of written co to Questions 15(a), 1 an asterisk. Quality presentation of ideas	6(d), 18(a)(iv), 18 of written commun	(b)(i) and 18 nication inclu	(b)(ii) ides cl	. The larity	se que	estions	are in	ndicated with	-		
	, r , r , r		r	6					,	Total	
This publication may be reproduced of Edexcel Limited copyright policy. ©2008 Edexcel Limited. Printer's Log. No. N32920A W850/6242/57570 3/2/2/	only in accordance with									<i>Turn</i> Cel	

Edexcel GCE in Chemistry

Ľ

© Edexcel Limited 2007

7

advancing learning, changing lives

(SECTION A	Leave blank
]	minu	tes	ALL the questions in this section. You should aim to spend no more than 25 on this section. For each question, select one answer from A to D and put a e box (⊠). If you change your mind, put a line through the box (곳) and then mark your new answer with a cross (⊠).	
			Use the Periodic Table as a source of data.	
1.	Go	ing a	across a period in the Periodic Table from left to right, the general trend is that	
	\mathbf{X}	A	the bonding in the element itself changes from ionic to covalent	
	X	B	the number of neutrons in the nucleus increases	
	×	С	the first ionisation energy decreases	
	×	D	the metallic character increases	Q1
			(Total 1 mark)	
2.			ectron configurations of argon, iron, chlorine and one other element are given but not in order. Which one represents the unnamed element?	
	×	A	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$	
	×	B	$1s^2 2s^2 2p^6 3s^2 3p^6$	
	X	С	$1s^2 2s^2 2p^6 3s^2 3p^4$	
	×	D	$1s^2 2s^2 2p^6 3s^2 3p^5$	Q2
			(Total 1 mark)	
3.	its	stru	insterfullerene is a carbon molecule with formula C_{60} which can trap metal ions in cture. Which of the following compounds of buckminsterfullerene would give a mass/charge ratio at 837.3 in a mass spectrometer?	
	X	Α	Na_4C_{60}	
	×		K ₃ C ₆₀	
	\mathbf{X}	С	Ca ₃ C ₆₀ AgC ₆₀	
	X	D	AgC_{60}	Q3
			(Total 1 mark)	

-

4. This q	uestion is about the following equations:	Leave blank
A		
В	$2HCl(aq) + CuO(s) \rightarrow H_2O(l) + CuCl_2(aq)$	
C C		
D		
(a) W	'hich equation is not balanced?	
🖾 A		
⊠ B		
C		
D D	(1)	
	(1)	
(b) W	'hich equation shows incomplete combustion?	
A		
⊠ B		
⊠ C		
D		
	(1)	Q4
	(Total 2 marks)	
Use this	space for any rough working. Anything you write in this space will gain no credit.	

I

5.	ent	halp	of the equations shown below represents the reaction for which ΔH is the standard v change of formation, $\Delta H_{f298}^{\leftrightarrow}$, for ethanol, C ₂ H ₅ OH. Ethanol melts at 156 K and 352 K.	Leave blank
	×	A	$2C(g) + 6H(g) + O(g) \rightarrow C_2H_5OH(g)$	
	\times	B	$2C(s) + 3H_2(g) + O_2(g) \rightarrow C_2H_5OH(l)$	
	X	С	$2C(s) + 3H_2(g) + O(g) \rightarrow C_2H_5OH(g)$	
	\mathbf{X}	D	$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l)$	Q5
			(Total 1 mark)	

6. Use the data about four fuels given below to answer this question.

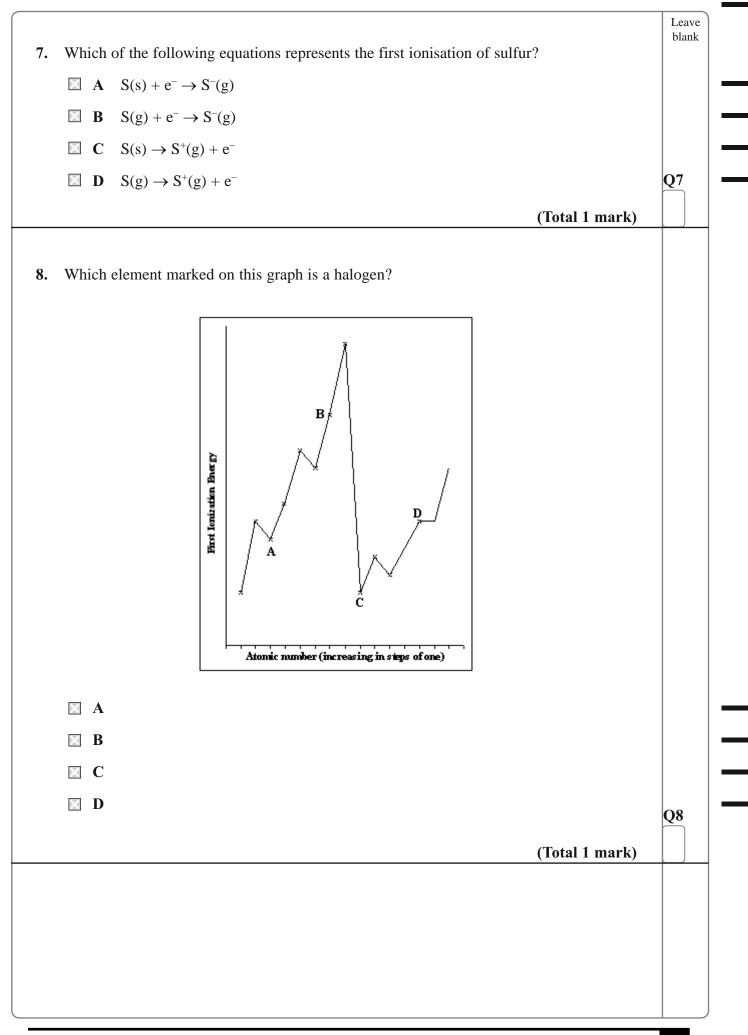
Fuel	Formula	Name	Enthalpy change of combustion /kJ mol ⁻¹	Molar mass /g mol ⁻¹
Α	CH_4	methane	-890	16
В	CH ₃ OH	methanol	-726	32
С	C ₃ H ₈	propane	-2219	44
D	C ₄ H ₁₀	butane	-2877	58

(a) Which fuel, A, B, C or D, produces most energy per gram on complete combustion?

🖾 A

B

C


D D

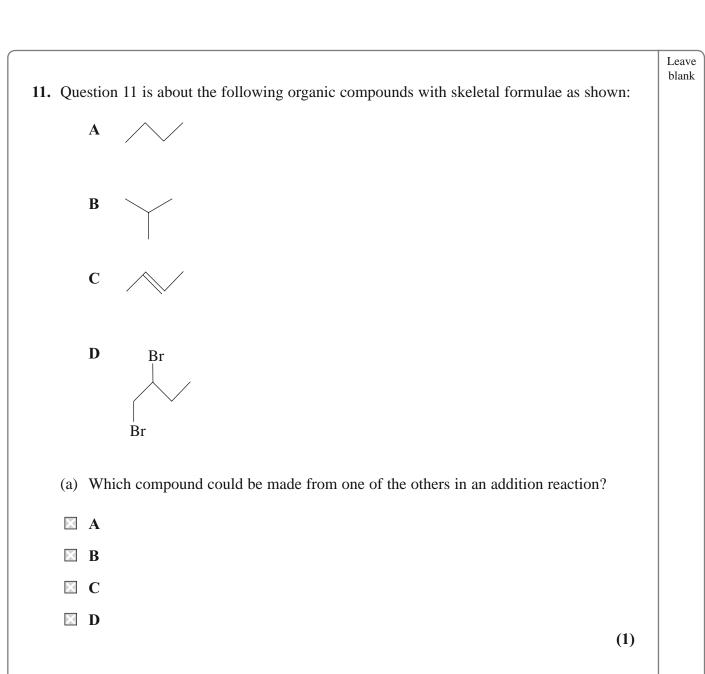
(1)

- (b) Scientists give governments advice on technical issues. What information would scientists use when advising governments on the choice of one of these fuels, if the aim was to minimise carbon dioxide production?
- A mass of carbon per gram of fuel
- **B** mass of carbon per kilojoules produced
- C number of kilojoules produced per gram
- **D** number of kilojoules produced per mole

(1) Q6

(Total 2 marks)

Leave blank Question 9 is about the following ionisation energy sequences. 9. The values are all in kJ mol^{-1} . 700 Α 1400 1000 950 830 B 420 3100 5900 4400 8000 С 1000 1250 1520 420 590 D 1520 2700 3900 5800 7200 Select from A to D the sequence which is most likely to represent the following: (a) The first ionisation energies of five consecutive members of the same group in the Periodic Table, in order of increasing atomic number. Х A \mathbf{X} B С X X D (1) (b) The first five ionisation energies of an s-block element. Α \mathbf{X} B \mathbf{X} С X D \mathbf{X} (1) (c) The first five ionisation energies of a noble gas. X A В \mathbf{X} С X D \times (1) Q9 (Total 3 marks)


10. Question 10 is about four hydrocarbons with molecular formulae as shown. C_2H_2 А B C_3H_6 С C_3H_8 D C_4H_{10} (a) Which hydrocarbon has the same empirical formula as its molecular formula? A B **C** D D (1) Use this space for any rough working. Anything you write in this space will gain no credit. (b) Which has a molecular ion in the mass spectrum at mass/charge ratio = 58? 🛛 A B B **C** D D Sample Assessment Materials

© Edexcel Limited 2007

(1)

Leave blank

		Leave blank
	Which is neither an alkane nor an alkene?	
\mathbf{X}	Α	
\times	В	
\square	C	
	D (1)	
(d)	Which could be 2-methylpropane?	
	Α	
	В	
	C	
\mathbf{X}	D	0.10
		Q10
	(Total 4 marks)	

Use this space for any rough working. Anything you write in this space will gain no credit.

	Leave blank
(b) Which compound has E–Z isomers?	
\mathbf{X} A	
⊠ B	
⊠ C	
\square D (1)	
(1)	Q11
(Total 2 marks)	
 Chemists investigating the mechanism of the reaction of ethene and bromine thought that the first step was the addition of Br⁺. To test this, they reacted bromine with ethene in the presence of sodium chloride. 	
If their theory about the first step of the reaction was correct, which product might form as well as 1,2-dibromoethane?	
\square A CH ₂ BrCH ₂ Na	
\square B CH ₂ BrCH ₂ Cl	
\square C CH ₂ ClCH ₂ Cl	
\square D CH ₂ NaCH ₂ Na	Q12
(Total 1 mark)	
13. Which of the following is the correct name for the compound below?	
CH ₃ Cl	
H CH ₃	
☑ A Z-3-chlorobut-2-ene	
\square B E-3-chlorobut-2-ene	
\square C E-2-chlorobut-2-ene	
D Z-2-chlorobut-2-ene	Q13
(Total 1 mark)	
TOTAL FOR SECTION A: 21 MARKS	

SECTION B

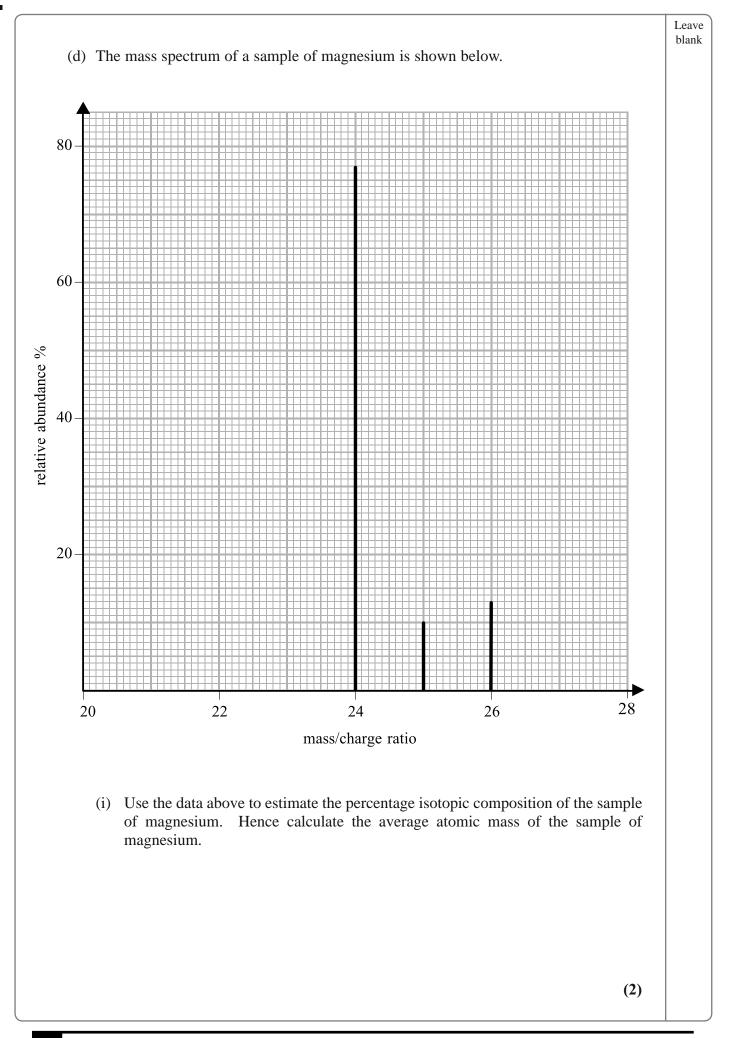
Answer ALL the questions. Write your answers in the spaces provided.

- **14.** Copper(II) sulfate solution can be prepared from solid copper(II) carbonate by reaction with hot dilute sulfuric acid.
 - (a) Write the equation for the reaction, including state symbols.

(1)

(b) The experiment was carried out using 0.025 moles of sulfuric acid of concentration $2.0 \text{ mol } \text{dm}^{-3}$. What volume of this sulfuric acid was used?

(1)


(c) (i) It is usual to react the sulfuric acid with a slight excess of copper(II) carbonate.
 Calculate the mass of copper(II) carbonate needed if a 10% excess is required.
 [Molar mass of copper(II) carbonate = 123.5 g mol⁻¹]

(2)

n	(ii) A student doing this experiment chose to use a balance reading to 0.01g in an
n	attempt to work accurately. Was this choice of balance necessary from the point of view of accuracy? Explain
	your answer.
)	(1)
1	d) The sulfuric acid is heated to boiling and the copper(II) carbonate is added in small portions.
r	State the next step needed to prepare pure copper(II) sulfate solution. Justify your answer.
)	(1)
e	e) When the solution of copper(II) sulfate is allowed to crystallise, the crystals which are produced have the formula CuSO ₄ .5H ₂ O.
	(i) What is the molar mass of $CuSO_4.5H_2O$?
	(1)
	(i) 3.98 g of CuSO₄.5H₂O crystals were obtained. Calculate the percentage yield in
	this experiment.
	(2)
)	(2)

	Describe the bonding in magnesium and explain why it is a good conductor of electricity.
	(3)
)	Draw a diagram (using dots or crosses) for the ions in magnesium fluoride showing all the electrons and the ionic charges on:
	(i) the magnesium ion
	(1)
	(ii) the fluoride ion.
	(ii) the fluoride ion.
	(ii) the fluoride ion. (1)
	(ii) the fluoride ion.(1)Under what conditions does magnesium fluoride conduct electricity?

l

(i) (i) Oceanographers studying plankton found that a sample of seawater contained 1.20 nanomol dm ³ of chlorophyll, C ₃₅ H ₇₇ MgN ₄ O ₅ . (1 nanomol = 1 × 10 ⁹ mol) What mass of magnesium would be present in 1.00 cm ³ of this sample of seawater? Give your answer to three significant figures. (2) (i) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the element still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) (1) (2) (1) (1) (1) (2) (1) (1) (1) (2) (1) (1) (1) (2) (1) (1) (1) (2) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		(ii)	Why do the three isotopes have the same chemical properties?	Leave blank
 (1) (e) (i) Oceanographers studying plankton found that a sample of seawater contained 1.20 nanomol dm⁻³ of chlorophyll, C₅₅H₇₇MgN₄O₅. (1 nanomol = 1 × 10⁻⁹ mol) What mass of magnesium would be present in 1.00 cm³ of this sample of seawater? Give your answer to three significant figures. (2) (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the element is most difficult to locate. (1) Q15 				
 1.20 nanomol dm⁻³ of chlorophyll, C₅₅H₇₇MgN₄O₅. (1 nanomol = 1 × 10⁻⁹ mol) What mass of magnesium would be present in 1.00 cm³ of this sample of seawater? Give your answer to three significant figures. (i) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the element still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
(2) (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate.	(e)) (i)		
 (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
 (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
 (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15			(2)	
(1) Q15		(ii)	X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms	
			Suggest which element is most difficult to locate.	
(Total 12 marks)			(1)	Q15
			(Total 12 marks)	

I

16. Airbags, used as safety features in cars, contain sodium azide, NaN_3 . An airbag requires a large volume of gas to be produced in a few milliseconds. The gas is produced in this reaction:

 $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$ ΔH is positive

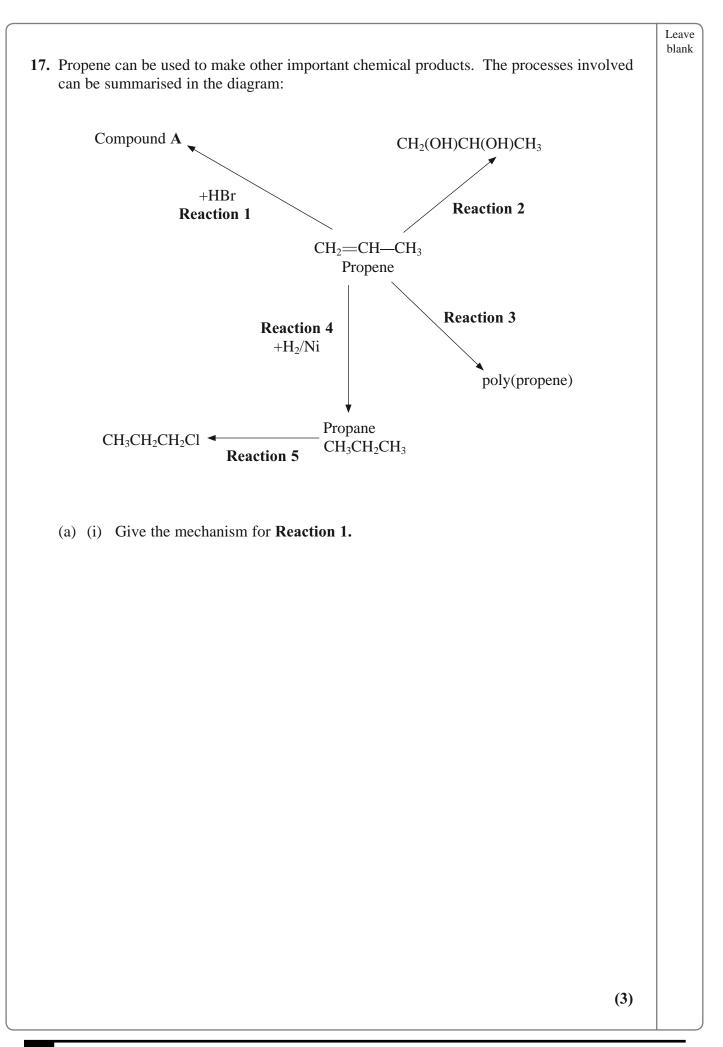
When the airbag is fully inflated, 50 dm³ of nitrogen gas is produced.

(a) Calculate the number of molecules in 50 dm^3 of nitrogen gas under these conditions.

[The Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$. The molar volume of nitrogen gas under the conditions in the airbag is 24 dm³ mol⁻¹].

(2)

Leave blank

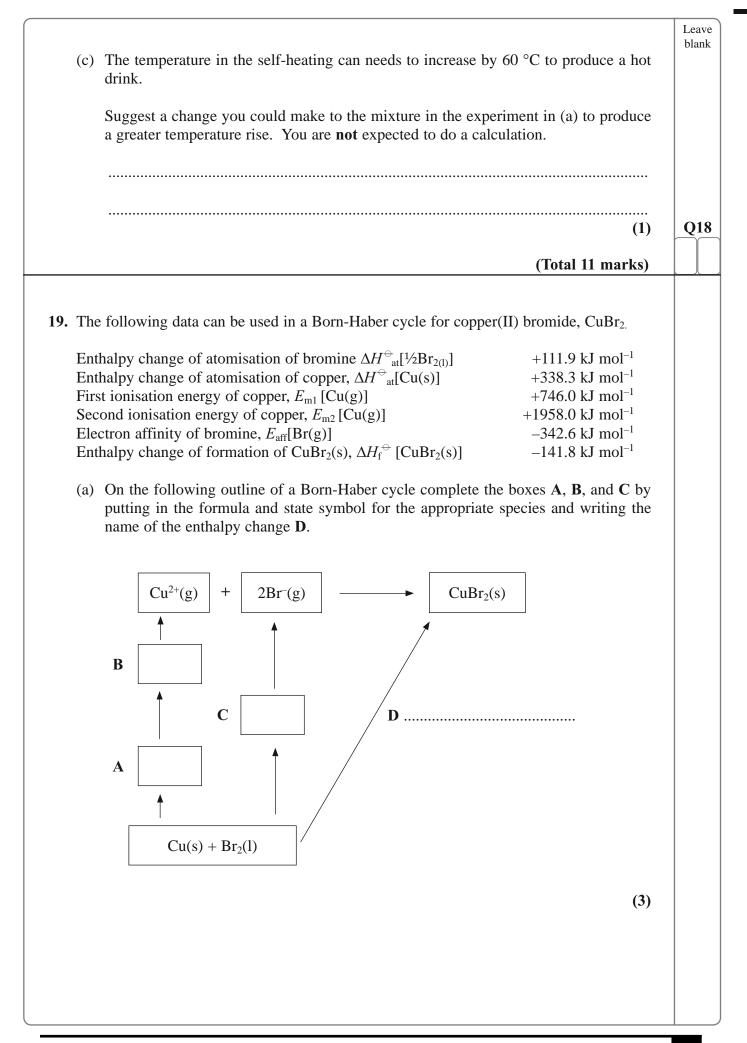

(b) Calculate the mass of sodium azide, NaN_3 , that would produce 50 dm^3 of nitrogen gas.

(3)

(1)	
to burst in an accident. An airbag which has sodium azide in it has decomposed.	(d)
(2) Q16 (Total 8 marks)	

23

l


	(1)
(i	iii) Name compound A formed in Reaction 1.
	Name
	(1)
) V	What is added in Reaction 2 to make the product $CH_2(OH)CH(OH)CH_3$?
•	(1)
	(*)
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
u n l) P	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae. $d(CH_2=CHCH_3) \rightarrow$
u n) P co	Complete the balanced equation for the formation of poly(propene) in Reaction 3 dising displayed formulae. $d(CH_2 = CHCH_3) \rightarrow$ (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing
u n) P co	Complete the balanced equation for the formation of poly(propene) in Reaction 3 asing displayed formulae. $I(CH_2=CHCH_3) \rightarrow$ (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing ourses to prevent the ground becoming frozen.
u n) P co	Complete the balanced equation for the formation of poly(propene) in Reaction 3 asing displayed formulae. $I(CH_2=CHCH_3) \rightarrow$ (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing ourses to prevent the ground becoming frozen.
u n l) P co	Complete the balanced equation for the formation of poly(propene) in Reaction 3 asing displayed formulae. $I(CH_2=CHCH_3) \rightarrow$ (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing ourses to prevent the ground becoming frozen.

L

(ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism.		
$CH_3CH_2CH_3 + Cl^{\bullet} \rightarrow CH_3CH_2CH_2^{\bullet} + HCl$ What is this step? (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. $Mg(s) + Cu(NO_3)_2(aq) \rightarrow Mg(NO_3)_2(aq) + Cu(s)$ In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm ³ of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		
What is this step? (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. $Mg(s) + Cu(NO_3)_2(aq) \rightarrow Mg(NO_3)_2(aq) + Cu(s)$ In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm^3 of $0.300 \text{ mol dm}^{-3}$ copper(II) nitrate solution into a 100 cm} beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	(e) (i)	One stage in the mechanism of Reaction 5 is shown below.
 (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (1)		$CH_3CH_2CH_3 + Cl^{\bullet} \rightarrow CH_3CH_2CH_2^{\bullet} + HCl$
 (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (I) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		What is this step?
 (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (I) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		
(1) gives evidence for this mechanism. (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO ₃) ₂ (aq) → Mg(NO ₃) ₂ (aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm ³ of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		(1)
(Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO ₃) ₂ (aq) → Mg(NO ₃) ₂ (aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm ³ of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	(ii)	• •
 A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		(1)
 A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		(Total 11 marks)
 cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		
In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm^3 of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		nt investigated a reaction which could be used to warm up coffee in self-heating
solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm^3 of $0.300 \text{ mol dm}^{-3}$ copper(II) nitrate solution into a 100 cm^3 beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		$Mg(s) + Cu(NO_3)_2(aq) \rightarrow Mg(NO_3)_2(aq) + Cu(s)$
50.0 cm^3 of $0.300 \text{ mol dm}^{-3}$ copper(II) nitrate solution into a 100 cm^3 beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	solution	. When a button on the bottom of the can is pressed, the magnesium powder is
adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	(a) A s	tudent investigated the enthalpy change for this reaction by measuring
Temperature of copper(II) nitrate solution at start = $22 \degree C$		
	The	e results are shown below.

Leave blank (i) Calculate the energy change which took place. The specific heat capacity of the solution is 4.20 J $g^{-1}K^{-1}$. Which is the correct value for the energy change in joules? (1) (ii) How many moles of copper(II) nitrate were used in the experiment? (1) (iii) Calculate the enthalpy change for the reaction. You should include a sign and units in your answer. (2)

*(iv)	Suggest two changes you would make to the equipment used in order to improve the accuracy of the result.
) The	ionic equation for the reaction is shown below:
Mg	(s) + $\operatorname{Cu}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Mg}^{2+}(\operatorname{aq}) + \operatorname{Cu}(\operatorname{s})$ $\Delta H = -532 \text{ kJ mol}^{-1}$
Woi	ald the following affect the value of the experimental result?
	lain your answer, stating the effect, if any, on the value of the enthalpy change ined.
*(i)	The student used 2 g rather than 1 g of magnesium.
*(ii)	The heat losses that occurred from the student's beaker.
	(2)

(b)	Use the data to calculate a value for the lattice energy of copper(II) bromide. Give a sign and units in your answer.	Leave blank
(c)	(3) When the lattice energy of copper(II) bromide is calculated from ionic radii and charges, the result is a value numerically about 10% less than the one obtained from	
	 the Born-Haber cycle. (i) What does this suggest about the nature of the bonding in copper(II) bromide? 	
	bromide ion.	Q19
	(Total 8 marks)	
	TOTAL FOR SECTION B: 59 MARKS TOTAL FOR PAPER: 80 MARKS END	

Sample Assessment Materials

BLANK PAGE

I

BLANK PAGE

BLANK PAGE

I

	0 (8)	(18) 4.0 hetium 2	20.2	Ne	neon 10	39.9	Ar	18	83.8	ŗ	krypton 36	131.3	Xe	xenon 5.4	5	[777]	Rn L	86		p															
	2	(21)	19.0	Ŀ	fluorine 9	35.5	CI	17	79.9		bromine 35	126.9	_	iodine 5.2		[012]	Ă	astatine 85		een reporte		Į	c/1	Ξ	lutetium 71	[257]	5	lawrencium 103	2						
	9	(16)	16.0	0	oxygen 8	32.1	Sulfur	16	79.0	Se	selenium 34	127.6	Ъ	tellurium	70001	[607]	8 2	polonium 84		116 have b	iticated	ţ	1/3	ď	ytterbium 70	[254]		102	!						
	2	(15)	14.0	z	nitrogen 7	31.0	P Photophonic	15	74.9	As	arsenic 33	121.8	Sb	antimony		0.602	B	bismuth 83		mbers 112-	but not fully authenticated		169	Ē	thulium 69	[256]	ΡW	mendelevium 101	;;						
	4	(14)	12.0	U	carbon 6	28.1	Silicon	14	72.6	g	germanium 32	118.7	Sn	tin	00	7.102	d J	lead 82		Elements with atomic numbers 112-116 have been reported but not fully authenticated				Ъ	erbium 68	[253]	E	fermium 100	2						
	e	(13)	10.8	в	boron 5	27.0	Al	13	69.7	Ga	gallium 31	114.8	Ē	indium 40	44	204.4	F	thallium 81		nents with		1,1	165		holmium 67	[254]	Cf Es	einsteinium 99	:						
lents								(12)	65.4	Zn	zinc 30	112.4	B	cadmium	ę ò	9.UU2	ВН	mercury 80		Eler		5	163	5	dysprosium 66	[251]	ປັ	californium 98	?						
Elem								(11)	63.5	J	copper 29	107.9	Ag	silver	1 107	0.741	Au	p10g	[272]	Rg	<u>9</u>		4C1		terbium 65	[245]	凝	berkelium 97	:						
The Periodic Table of Elements					(10)	58.7	ż	nickel 28	106.4	Pd	palladium			t	platinum 78	[271]		darmstadtium 110	ļ	2		gadolinium 64	[247]	5 C	aunum 96	:									
c Tab								(6)	58.9	ა	cobalt 27	102.9	Rh	rhodium	f+ (2)	7.761	۔	77	[268]	Mt	meitnerium 109	i.	761		europium 63	[243]	Am	americium 95	:						
riodi		+hydrogen 1:0						(8)	55.8	Fe		101.1	Ru	molybdenum technetium ruthenium	ŧ ;	7.061	ő	оsтит 76	[277]	Hs	hassium 108	¢ u	DCL	S	samarium 62	[242]	Np Pu Am	plutonium 94	:						
he Pe			relative atomic mass					(2)	54.9	Mn	chromium manganese 24 25	[98]	Ч	technetium	C+ 1	100.4	Re	75	-	Вh	bohrium 107	Ę	14/	Pa	59 60 61 61 61	[237]	ď	neptunium 93	2						
F				mass	mass	mass	mass	mass	mass	bol	umber]		(9)	52.0	ა		95.9	٩	molybdenum		103.0	≥	tungsten 74	[366]	Sg	seaborgium 106		144	PZ	neodymium 60	238	∍	uranium 92	ļ
		Key		atomic symbol	name atomic (proton) number	(5)	(2)	50.9	>	vanadium 23	92.9	qN	niobium 44	+	180.4	ц Та	tantalum 73			dubnium 105	;	141	Ч	praseodymium 59	[231]	Pa	protactinium 91	:							
				relat	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium	0 ⁺	C.8/1	Ŧ	72	[261]	Rf	nutherfordium 104	ļ,	140	ဗီ	cerium 58	232	f	thorium 90	:					
								(3)	45.0	S	scandium 21	88.9	≻	yttrium	0.001	1.36.9	ra*	latnanum 57	[227]	Ac*	actinium 89			S											
	2	(2)	0.6	Be	beryllium 4	24.3	Mg	12	40.1	Ca	0	87.6	Sr	strontium	00	د. روا د	Ba	56	[226]	Ra	radium 88			 Lanthanide series 	* Actinide series										
	-	(1)	6.9	:5	lithium 3	23.0	Na	11	39.1	¥	potassium 19	85.5	წ	rubidium 27	<i>b</i>	1.22.Y	ე ე	55	[223]	ድ	francium 87			* Lanti	 Actin 										

									Surname	I	nitial(s	s)
Centre No.				Pape	r Refer	ence						
Candidate No.		6	C	H	0	2	/	1	Signature			
	Paper Reference(s) 6CH0							•	_	Examiner'	s use o	only
												-
	Ede	excel	G		E					Team Leade	r's use	only
	Chen	nistry										
	Adva	nced	Sul	bsi	dia	ry				Ques		Leave Blank
	Unit 2	2: App	licat	tion	of	Co	re l	Prir	nciples	Sect		
		of C							I	A		
				n o u	J					Sect	ion	
	Sompl		ama	nt N	Ant	aria]	1			E		
	-	e Asses					l			Sect	ion	
	Time:	1 hour	15 r	nını	ites					(2	
										-	_	
	Materials r Nil	equired for	examin	nation	Ite Ni		cluded	l with	question papers			
	1 (11				141							
Instructions to C				1.				<u> </u>		_ -	_	
In the boxes above, Check that you have	e the correct q	uestion pap								re.	_	
the spaces provided Some questions mu			ss in a	box (X). If	you o	change	e your	mind, put a line		_	
through the box (\blacksquare Do not use pencil.			v answ	er wit	h a cr	oss (🛛	().	•			_	
-												
Information for C The marks for indiv		s and the n	arts of	auesti	ons ar	e sho	wn in	round	hrackets: e.g. (2)	_ _		
There are 28 question	ons in this que	stion paper.	The t	otal m	ark fo	or this	paper					
There are 28 pages Candidates may use		n paper. Al	ny bian	ik page	es are	indica	ated.					
Advice to Candid	lates											
Quality of written c	ommunication									- -		
Questions 26(b)(ii), with an asterisk. Question of idea	uality of writte	en commun	ication	incluc	des cla					1		
•	C a	•		•	C					То	tal	
This publication may be reproduced Edexcel Limited copyright policy. ©2008 Edexcel Limited.	only in accordance with										rn o	
Printer's Log. No.										1 U		
W850/6242/57570 3/2/2/		 	2 S	∦∥∎ ∥∎ ∂ 2	1 A		 ∎ 1 2	8 8		exce		e lives

Edexcel GCE in Chemistry

© Edexcel Limited 2007

35

advancing learning, changing lives

			SECTION A	Leav blan
			SECTION A	
		s on	LL the questions in this section. You should aim to spend no more than 30 this section. Put a cross in the box (\boxtimes). If you change your mind, put a line rough the box (\boxtimes) and then mark your new answer with a cross (\boxtimes).	
Ea	ach (of th	e questions or incomplete statements is followed by four suggested answers. Select the BEST answer in each case.	
1.	Wh	nich	of the following best describes the molecular shape of carbon dioxide, CO ₂ ?	
	X	A	linear	
	X	B	trigonal planar	
	X	С	triangular	
	\mathbf{X}	D	v-shaped	Q1
			(Total 1 mark)	
•				
2.	Wh	nich	of the following species is polar?	
	Х	A	NH ₃	
	X	B	BF ₃	
	X		SO ₃	
	Х	D	CO_{3}^{2-}	Q2
			(Total 1 mark)	
3.			quids are affected by electric fields. For which of the following liquids would a jet iquid be affected by an electric field?	
	\times	A	hexane	
		_	avalahayana	
	Х	B	cyclohexane	
	X	B C	cyclohexene	
				Q3

		Leave blank
4.	What are the intermolecular forces in methanal, HCHO?	
	A London forces only	
	B hydrogen bonds and London forces	-
	C permanent dipole – permanent dipole only	
	D permanent dipole – permanent dipole and London forces	Q4 –
	(Total 1 mar	rk)
5.	Which of the following substances is likely to be insoluble in water?	
	\square A methanol, CH ₃ OH	-
	\square B ethanol, CH ₃ CH ₂ OH	-
	\Box C fluoromethane, CH ₃ F	
	D hydrogen fluoride, HF	Q5 –
	(Total 1 mar	rk)
6.	The following liquids have a similar number of electrons per molecule. Suggest which likely to have the highest boiling point?	h is
	\square A CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	
	\square B (CH ₃) ₃ COH	
	\Box C CH ₃ CH ₂ CH(OH)CH ₃	
	\square D CH ₃ CH ₂ CH ₂ CH ₂ OH	Q6 –
	(Total 1 mai	rk)
ι	Use this space for any rough working. Anything you write in this space will gain no credit.	0

7.	Wł	nich	concentrated acid should be used to dissolve a carbonate of a Group 2 metal to	Leave blank
			ut a flame test?	
	X	A	ethanoic acid	
	X	B	hydrochloric acid	
	X	С	nitric acid	
	X	D	sulfuric acid	Q7
			(Total 1 mark)	
8.	Wł	nat c	olour does a barium salt give in a flame test?	
	X	A	colourless	
	X	B	green	
	X	С	red	
	X	D	yellow-red	Q8
			(Total 1 mark)	
9.		l stro		Q9
		D	4 (Total 1 mark)	

_

10 A Crown 2 classest successive with write to produce a soluble budgewide which	Leave blank
10. A Group 2 element reacts vigorously with water to produce a soluble hydroxide, which forms a white precipitate when neutralised by sulfuric acid and forms a carbonate which is very stable to heat. The element could be	
A magnesium	
B calcium	-
C strontium	–
D barium	Q10
(Total 1 mark)	
11. The Group 2 metals, considered in order of increasing atomic number, show a decrease in	
A first ionisation energy	-
B nuclear charge	-
\Box C chemical reactivity	-
\square D ionic radius	Q11 -
(Total 1 mark)	
12. When a Group 1 metal nitrate is heated, brown fumes are observed. The metal could be	
A lithium	-
B sodium	-
C rubidium	-
D caesium	Q12 -
(Total 1 mark)	
Use this space for any rough working. Anything you write in this space will gain no credit.	

co	lour	orange is red in acidic solutions and yellow in alkaline solutions. What is the of the indicator at the end point of a titration of aqueous sodium hydroxide solution drochloric acid?	Leave blank
\times	A	red	
\times	B	pink	
\times	С	orange	
\times	D	yellow	Q13
		(Total 1 mark)	
14. Th 0.1	e vol 25 n	lume, in cm ³ , of 0.25 mol dm ⁻³ hydrochloric acid required to neutralise 100 cm ³ of nol dm ⁻³ barium hydroxide solution, Ba(OH) ₂ (aq), is	
\times	A	25	
\times	B	50	
\times	С	100	
\times	D	200	Q14
		(Total 1 mark)	
15. W	hat is	s the oxidation number of sulfur in sodium tetrathionate, $Na_2S_4O_6$?	
\times	A	_ ¹ / ₂	
\times	B	+11/2	
\times	С	+21/2	
\times	D	+5	Q15
		(Total 1 mark)	

16. Which	of the following statements is FALSE?	blank
	iodine is more electronegative than bromine.	
B	fluorine is more electronegative than chlorine.	
C	metallic elements tend to react by loss of electrons.	
D	chlorine is more electronegative than sulfur.	Q16
	(Total 1 mark)	
	nercial production of iodine involves the reduction of a solution of iodate(V) ions, ith hydrogen sulfite ions, HSO_3^- . The equation for the reaction may be written	
	$xIO_{3}^{-} + yHSO_{3}^{-} \longrightarrow zSO_{4}^{2-} + I_{2} + 3H^{+} + H_{2}O_{4}^{2-}$	
What a	re the balancing numbers x, y and z?	
A	5,2,2	
B	2,5,2	
C	2,5,5	
D	5,5,2	Q17
	(Total 1 mark)	
Use this	space for any rough working. Anything you write in this space will gain no credit.	

so	dium	anic compound is found to react with sodium metal and to react with acidified dichromate(VI), but not to decolourise bromine water, nor to neutralise sodium ate solution. The liquid could be	L t
\times	A	ethanol	
\times	В	ethane	
X	С	ethanoic acid	
\times	D	ethene	Q
		(Total 1 mark)	
19. W	hich	of the following is not a greenhouse gas?	
X	A	CH_4	
\times	В	CO_2	
\times	С	H ₂ O	
X	D	N_2	Q
		(Total 1 mark)	
20. W	hich A	of the following fuels has the smallest carbon footprint? petrol made from crude oil	
\times	В	hydrogen made from methane	
X	С	ethanol made from sugar	
\times	D	coal	Q
		(Total 1 mark)	
	Thich Focess	of the following would not lead to a greater sustainability in an industrial ?	
\times	A	using a catalyst that improves atom economy	
\times	В	running the reaction at a higher temperature	
\times	С	using biofuels to run the process	
	D	recycling waste products	Q
\times			

BLANK PAGE

The following questions deal with situations. Each situation is followed by a set of questions. Select the best answer for each question.

22. This question concerns the preparation of 1-bromobutane from butan-1-ol, 50% sulfuric acid and sodium bromide. The mixture was placed in a flask and heated under reflux for ten minutes.

	Boiling temperature / °C
1-bromobutane	100
butan-1-ol	118

- (a) The reason that 50% sulfuric acid was used rather than concentrated sulfuric acid is because concentrated sulfuric acid
- A would oxidise some of the bromide ions to bromine.
- **B** would cause the reaction to go too fast.
- \square C would react with the bromide ions to produce hydrogen bromide.
- **D** is too hazardous a chemical.

(1)

Leave blank

- (b) The reaction mixture was distilled. The impure distillate did not contain
- \square A butan-1-ol
- **B** 1-bromobutane
- \square C sodium bromide
- **D** hydrogen bromide

(1)

Use this space for any rough working. Anything you write in this space will gain no credit.

 (c) The impure 1-bromobutane was washed with concentrated hydrochloric acid and shaken in a tap funnel with a base to remove acidic impurities. Which of the following would remove acidic impurities without reacting with the 1-bromobutane. A calcium hydroxide solution B sodium hydroxide solution C calcium chloride solution D sodium hydrogencarbonate solution (1) (d) The 1-bromobutane was washed with water, dried and distilled. Which of the following is the correct procedure? 	blank
 B sodium hydroxide solution C calcium chloride solution D sodium hydrogencarbonate solution (1) (d) The 1-bromobutane was washed with water, dried and distilled. Which of the 	
 C calcium chloride solution D sodium hydrogencarbonate solution (1) (d) The 1-bromobutane was washed with water, dried and distilled. Which of the 	
 D sodium hydrogencarbonate solution (1) (d) The 1-bromobutane was washed with water, dried and distilled. Which of the 	
(1) (d) The 1-bromobutane was washed with water, dried and distilled. Which of the	
\blacksquare A heat the liquid to 118 °C and collect the substance given off	
\blacksquare B heat the liquid to 100 °C and collect the substance given off	
\square C boil the liquid and collect the fraction that boils off between 116 and 120 °C	
\square D boil the liquid and collect the fraction that boils off between 98 and 102 °C	
(1)	Q22
(Total 4 marks)	

			Lea bla	ave ink
		two thirds of the world's ethanoic acid is made using the following equilibrium n, with the aid of an iridium complex as a catalyst.		
		$CH_3OH(l) + CO(g) \rightleftharpoons CH_3COOH(l) \Delta H = -135 \text{ kJ mol}^{-1}$		
		of the following changes in conditions would increase the equilibrium yield of c acid?		
\times	A	increase pressure		
\times	B	decrease pressure		
\times	С	increase temperature		
\times	D	add a catalyst	Q23	3
		(Total 1 mark)		
Use 1	this s	space for any rough working. Anything you write in this space will gain no credit.		

BLANK PAGE

			Leave blank
24. S	ome a	bsorptions by chemical bonds in the infrared spectrum are given below.	
	A	O—H stretching in alcohols at 3750–3200 cm ⁻¹	
	B	C—H stretching in alkanes at 2962–2853 cm ⁻¹	
	С	C=O stretching in aldehydes at 1740–1725 cm^{-1}	
	D	C=O stretching in ketones at 1700–1680 cm ⁻¹	
		A–D above, select which feature of the infrared spectrum would enable you to uish between the following compounds:	
		propanone, CH ₃ COCH ₃ , propanal, CH ₃ CH ₂ CHO	
		propan-1-ol, CH ₃ CH ₂ CH ₂ OH	
(8	a) pro	opanone from propanal and propan-1-ol	
X	A		
X	B		
X	C		
X	D		
		(1)	
(1	b) pro	opanal from propanone and propan-1-ol	
X	A		
X	B		
X	C		
X	D		
		(1)	

	Leave blank
(c) propan-1-ol from propanal and propanone	
\square B	
\square C	
☑ D (1)	Q24
(Total 3 marks)	
TOTAL FOR SECTION A: 29 MARKS	
Use this space for any rough working. Anything you write in this space will gain no credit.	

		SECT	TION B		
Answer ALI	L the ques	tions. Write y	your answers in a	the spaces provid	ded.
25. This question is a	about orgai	nic compounds	with the molecu	lar formula C ₃ H ₈ 0	D.
			two isomers wi of these alcohols.	th molecular for	mula C ₃ H ₈ O
		Alc	ohol 1	Alcoh	ol 2
	uctural nula				
Nan					(4)
(b) Primary alco (i) Give the	phols can b e name and	e oxidised to c	arboxylic acids. rmula of the carb	ooxylic acid form	(4)
(b) Primary alco(i) Give the primaryName	ohols can b e name and alcohol C ₃	be oxidised to c d structural for ₃ H ₈ O is fully o	arboxylic acids. rmula of the carb	ooxylic acid form	(4)
(b) Primary alco(i) Give the primaryName	ohols can b e name and alcohol C ₃	be oxidised to c d structural for ₃ H ₈ O is fully o	arboxylic acids. rmula of the carb xidised.	ooxylic acid form	(4)
 (b) Primary alco (i) Give the primary Name Structura 	ohols can b e name and alcohol C ₃ 	be oxidised to c d structural for ₃ H ₈ O is fully o	arboxylic acids. rmula of the carb xidised.	ooxylic acid form	(4) ed when the
 (b) Primary alco (i) Give the primary Name Structura (ii) State the 	ohols can b e name and alcohol C ₃ al formula e reagents t	be oxidised to c d structural for ₃ H ₈ O is fully o	arboxylic acids. rmula of the carb xidised.	ooxylic acid form	(4) ed when the
 (b) Primary alco (i) Give the primary Name Structura (ii) State the Reagent 	ohols can b e name and alcohol C ₃ al formula e reagents t	e oxidised to c d structural for ₃ H ₈ O is fully o	arboxylic acids. rmula of the carb xidised.	ooxylic acid form	(4) ed when the

BLANK PAGE

	(1)
(ii)	Draw a diagram to show this bonding. Use displayed formulae of two water molecules. Clearly mark and label the bond angle between the water molecules.
	(2)
(b) (i)	Draw the boron trichloride molecule, BCl_3 , making its shape clear. Mark the bond angle on your diagram.
	(2)
*(ii)	(2) Explain why boron trichloride has this shape.
*(ii)	

Leave blank

(iii) Explain why a B–Cl bond is polar.	Leave blank
(iv)	(1) Explain why a BCl ₃ molecule is non-polar.	
(v)	(1) Name the strongest intermolecular force between boron trichloride molecules.	
	(1)	Q26
	(Total 11 marks)	

BLANK PAGE

27.	(a)	This part of the question is about the hydrolysis of halogenoalkanes.	Leave blank
	. ,		
		2 cm^3 of ethanol is added to each of three separate test-tubes.	
		Three drops of 1-chlorobutane are added to the first, three drops of 1-bromobutane to the second, and three drops of 1-iodobutane are added to the third test-tube.	
		2 cm^3 portions of hot aqueous silver nitrate solution are added to each test-tube.	
		A precipitate forms immediately in the third test-tube, slowly in the second test- tube and extremely slowly in the first test-tube. In each reaction the precipitate is formed by silver ions, $Ag^+(aq)$, reacting with halide ions formed by hydrolysis of the halogenoalkane.	
		(i) Why was ethanol added to each test-tube?	
		(1)	
		(ii) The mechanism of this reaction is similar to that of the reaction between halogenoalkanes and aqueous hydroxide ions.	
		What feature of a water molecule enables it to act as a nucleophile in this reaction? Suggest the mechanism for the reaction between water and 1-iodobutane. (You may represent 1-iodobutane as RCH_2I).	
		Feature of water molecule	
		Mechanism	

(iii)	What is the colour of the precipitate in the third test-tube?
(iv)	Name the precipitate which forms slowly in the first test-tube.
(v)	Ammonia solution is added to the precipitate in the first test-tube. Describe what you would observe.
	(1)
(vi)	(1) Suggest, why the rates of hydrolysis of the three halogenoalkanes are different, in terms of bonding and kinetics.
(vi)	Suggest, why the rates of hydrolysis of the three halogenoalkanes are different,
(vi)	Suggest, why the rates of hydrolysis of the three halogenoalkanes are different,
(vi)	Suggest, why the rates of hydrolysis of the three halogenoalkanes are different,
(vi)	Suggest, why the rates of hydrolysis of the three halogenoalkanes are different,
(vi)	Suggest, why the rates of hydrolysis of the three halogenoalkanes are different,

Leave blank *(b) One method of the manufacture of alcohols is to react steam with an alkene. For example $C_2H_4(g) + H_2O(g) \longrightarrow C_2H_5OH(l)$ Suggest TWO reasons why this method is preferred to the hydrolysis of halogenoalkanes. (2) (c) 1-bromobutane reacts with an ethanolic solution of potassium hydroxide on heating to form but-1-ene. A diagram of the apparatus that could be used to carry out this reaction and to collect the gaseous but-1-ene is shown below. but-1-ene ethanolic potassium hydroxide + 1-bromobutane ↑ Heat (i) State the hazard when the heating is stopped. _____ (1) (ii) How would you minimise the risk associated with this hazard? (1) Q27 (Total 15 marks) **TOTAL FOR SECTION B: 34 MARKS**

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

28. Chlorine was used in swimming pools as a bactericide.

The amount of chlorine present can be determined by adding excess potassium iodide solution to a known volume of swimming pool water. This reacts to form iodine:

 $Cl_2(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2Cl^-(aq)$

The amount of iodine formed is then found by titration with sodium thiosulfate solution of known concentration.

The ionic equation for the reaction between iodine and sodium thiosulfate in aqueous solution is

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

A student carried out the determination of chlorine in a sample of swimming pool water. A record of the measurements obtained is given below:

Volume of water sample tested	$= 1000 \mathrm{cm}^3$
Final reading of burette	$= 16.3 \mathrm{cm}^3$
Initial reading of burette	= 7 cm ³
Volume added from burette	$= 9.3 \mathrm{cm}^3$

Concentration of sodium thiosulfate solution = $0.00500 \text{ mol dm}^{-1}$

(a) (i) The record of measurements reveals faults both in the procedure and the recording of measurements. State **one** fault in each of these.

(ii) Calculate the number of moles of sodium thiosulfate used in the titration.

Leave blank (iii) Use your answer to (ii) to calculate the number of moles of iodine which reacted.

(1)

(iv) Deduce the concentration of chlorine, in mol dm⁻³, in the swimming pool water.

(1)

(2)

(b) The disinfecting action of chlorine in swimming pools is due to the presence of chloric(I) acid, HClO, formed by the reaction of chlorine with water.

In many swimming pools, chemicals other than chlorine are used to form chloric(I) acid. This is partly because the use of chlorine gas causes much more corrosion of metal parts in swimming pools than does chloric(I) acid.

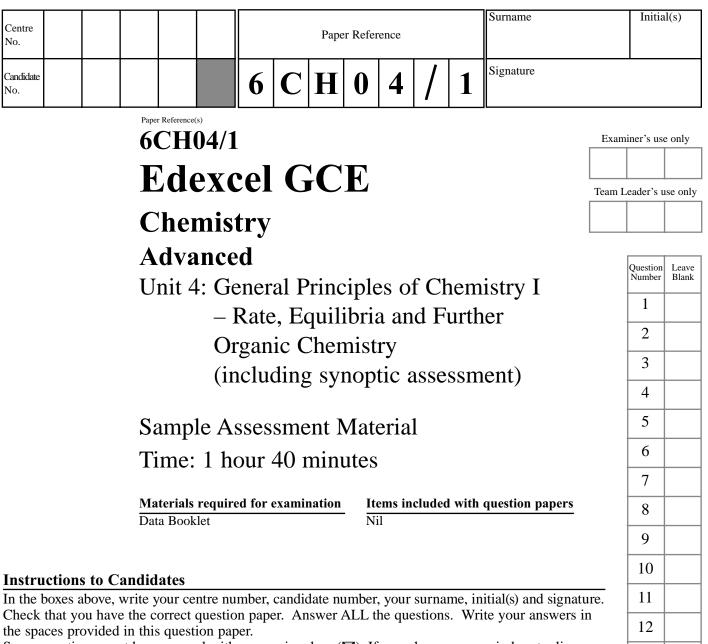
Compounds used to chlorinate swimming pool water in this way include calcium chlorate(I) and chlorine dioxide.

*(i) State and explain the type of reaction that occurs when chlorine attacks a metal, using the example of iron.

(ii) Suggest **one** other reason why the use of chlorine is undesirable in swimming pools.

.....(1)

(iii) Give the formula for calcium chlorate(I).


.....(1)

$4\text{ClO}_2 + 2\text{H}_2\text{O} \rightarrow$	\rightarrow HClO + 3HClO ₃
Explain, in terms of oxidation reaction.	numbers, why this is a disproportionation
	(2)

Leave

Leave blank	
narks)	(Total 17 mark
	TOTAL FOR SECTION C: 17 MARK TOTAL FOR PAPER: 80 MARK
	END
	END

83.8 Kr krypton 36 131.3 He helium 0 (8) 20.2 39.9 Ar argon 18 Xenon 54 [222] Rn 86 Neon 10 (18) 4.0 2 Elements with atomic numbers 112-116 have been reported but not fully authenticated Lu lutetium awrenciur 126.9 luorine 19.0 chlorine bromine astatine iodine 210 175 79.9 Br 257 103 35.5 ۲ ¥ 85 (11) 35 53 LL. 6 υ 1 ~ ytterbium nobelium 102 tellurium selenium polonium 127.6 oxygen 79.0 254] [209] sulfur **Å** Ŷ 16.0 Ъ Se 2 16) 32.1 16 34 52 84 20 0 S œ 9 nitrogen osphorus mendelevium 101 antimony bismuth 121.8 209.0 arsenic thulium 74.9 (15) 14.0 31.0 169 3 256] PW As Sb 69 15 33 83 4 5 B ŝ fermium 100 12.0 carbon Silicon 72.6 207.2 167 Er erbium E 118.7 (14) ermaniu g 253] 28.1 2 E N Pb 82 4 68 9 32 insteinium 99 uminium 165 Holmium 114.8 gallium 27.0 indium 204.4 thallium 10.8 boron B (13) 254 69.7 Ga ß 13 31 <u>_</u> 49 67 A 5 S F ŝ Cf catifornium Hg mercury 80 dysprosium The Periodic Table of Elements cadmium 200.6 112.4 В 65.4 **D**¹⁶³ [251] (12) Zinc 20 48 66 I Rg entgenium berkelium 97 197.0 terbium 07.9 Cu copper 29 63.5 [272] [245] Bk Ag Bold 79 159 **Tb** (11) 111 65 47 gadolinium palladium platinum mstadtiu 106.4 195.1 [271] Serie Marine Mar **Ni** nickel (10) Pd õ 110 157 Gd 247 58.7 78 28 46 ħ 49 americium rhodium eitneniun europium 02.9 192.2 iridium Cobalt 268] 243] Am 58.9 152 Eu 109 66 문 45 ¥ 1 63 27 L 6) 1.0 H hydrogen ruthenium samarium plutonium osmium hassium 190.2 55.8 101.1 277] £ R õ 108 150 Sm 242 Р P. iron 76 26 4 94 62 (8) ND neptunium 93 echnetium **Bh** bohrium omethium 186.2 **henium** ngane: 25 264] [147] Re Pa 54.9 [237] 107 98] 툍 2 43 75 6 61 uranium 92 tungsten 95.9 183.8 Sg eaborgiu 106 neodymiu 52.0 266] Ŷ 144 PZ 238 chromiu ybder atomic (proton) number 38 99 (9) 24 ≥ 74 Շ relative atomic mass atomic symbol tantalum /anadium 180.9 dubnium niobium seodymiu 50.9 92.9 [262] Key name B 231] otactini 105 £ Ta P 14 Pa 23 23 59 (2) 4 16 utherfordium zirconium thorium Cerium 178.5 itanium hafnium 91.2 [261] 104 140 232 47.9 £ R 58 6 Z 4 Ŧ 22 4 22 actinium scandium athanum 138.9 yttrium 45.0 88.9 [227] La* Ac* 3 39 S 89 21 57 Lanthanide series Mg strontium Actinide series calcium **Ba** barium beryllium 87.6 137.3 adium 24.3 226] 9.0 Be 40.1 Ra S 12 56 20 S 38 88 N (2)4 otassium **ubidium** 132.9 rancium Li lithium sodium caesium 23.0 85.5 39.1 223] Na B 6.9 Ξ 19 37 S 22 È (1) ¥ 87

Some questions must be answered with a cross in a box (\boxtimes). If you change your mind, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes). Do not use pencil. Use black or blue ink.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 20 questions in this question paper. The total mark for this paper is 90. There are 32 pages in this question paper. Any blank pages are indicated. Candidates may use a calculator.

Advice to Candidates

Quality of written communication will be taken into account in the marking of your responses to Questions 16(d), 17(b), 18(c)(ii), 19, 20(b)(i) and 20(b)(iii). These questions are indicated with an asterisk. Quality of written communication includes clarity of expression, the structure and presentation of ideas and grammar, punctuation and spelling.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

Edexcel GCE in Chemistry

13

14

15

16

17

18

19

20

Total

Turn over

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 30 minutes on this section. For each question, select one answer from A to D and put a cross in the box (⊠). If you change your mind, put a line through the box (곳) and then mark your new answer with a cross (⊠).

- 1. This question involves the following techniques which can be used to follow chemical reactions in order to investigate their kinetics.
 - A collecting and measuring the volume of a gas
 - **B** colorimetry
 - **C** measuring the electrical conductivity
 - **D** titration with standard acid solution

Select, from A to D, the technique **most** appropriate to investigate:

(a) the hydrolysis of 1-bromobutane using hydroxide ions

 $C_4H_9Br(l) + OH^-(aq) \rightarrow C_4H_9OH(l) + Br^-(aq)$

- A
- B B
- **C**
- D D

(1)

Leave blank

(b) the decomposition of the benzenediazonium ion

 $C_6H_5N_2^+(aq) + H_2O(l) \rightarrow C_6H_5OH(aq) + N_2(g) + H^+(aq)$

A A

B

- C C
- D D

(1)

(c) the reaction of acidified potassium manganate(VII) with propan-2-ol to give propanone and manganese(II) sulfate. A B C D (1) (d) the catalytic decomposition of hydrogen peroxide. A B C D (1) (1) OI Total 4 mark)			Leave blank	
$ \begin{bmatrix} B \\ C \\ D \\ C \\ B \\ C \\ B \\ C \\ B \\ C \\ D \\ C \\ D \\ C \\ D \\ C \\ C \\ D \\ C \\ C$	(c)	the reaction of acidified potassium manganate(VII) with propan-2-ol to give propanone and manganese(II) sulfate.		
 C D (1) (2) (1) 	\times	Α		
 D (1) (2) (3) (4) (5) (7) (1) <l< td=""><td>\times</td><td>В</td><td></td><td></td></l<>	\times	В		
 (1) (d) the catalytic decomposition of hydrogen peroxide. A B C D (1) Q1 	\times	C		
 (d) the catalytic decomposition of hydrogen peroxide. A B C D (1) Q1 	\times		•	
□ B □ C □ D (1) Q1	(d)			
□ C □ D (1) Q1	\times	Α		
□ D (1) Q1	\times	В		
(1) Q1	\times	C		
	X			
(Total 4 mark)		(1)	Q1	
		(Total 4 mark)		

2.		-dibi iatio	romoethane reacts with potassium iodide dissolved in methanol according to the	Le bl
			$C_2H_4Br_2 + 2KI \rightarrow C_2H_4 + 2KBr + I_2$	
	The	e rate	e equation for this reaction is	
	X	A	rate = $k[KI]^2[C_2H_4Br_2]$	
	×	B	rate = $k[KI]^2$	
	\mathbf{X}	С	$rate = k[C_2H_4Br_2]$	
	\mathbf{X}	D	not possible to deduce from this information	Q2
			(Total 1 mark)	
3.			reaction between sodium bromate(V) and sodium bromide in acidic solution, the ation is:	
			Rate = $k[BrO_3^{-}][Br^{-}][H^{+}]^2$	
		nen t tor o	he concentrations of all three reactants are doubled, the rate will increase by a f	
	×	A	4	
	\times	B	6	
	×	С	8	
	\mathbf{X}	D	16	Q3
			(Total 1 mark)	
ι	Use t	his s	pace for any rough working. Anything you write in this space will gain no credit.	

4.	This question ref	fers to the following react	tion at 2	298 K:		Leave blank
		$N_2O_4(g) \rightarrow 2NO_2(g)$	ΔH =	$= + 57.2 \text{ kJ mol}^{-1}$		
				S/J mol ⁻¹ K ⁻¹		
		$N_2O_4(g)$		304.2		
		NO ₂ (g)		240.0		
	(a) Calculate ΔS	S_{system} , in J mol ⁻¹ K ⁻¹ , for	this rea	ction.		
	▲ −175.8					
	B +175.8 ■					
	C −64.2					
	■ D +64.2					
					(1)	
	(b) Calculate Δ	$S_{\text{surroundings}}$, in J mol ⁻¹ K ⁻¹ ,	for this	reaction at 298 K.		
	▲ -192					
	B +192 B −192					
	C −0.192					
	■ D +0.192					
					(1)	Q4
					(Total 2 marks)	
5.	For the equilibriu	um,				
		$N_2(g) + 3H_2($	g) \rightleftharpoons 21	NH ₃ (g)		
	Which is the corr	rect expression for K_p ?				
	$\square A = [NH] [N_2(g)]$	$(g_3(g))^2$	B	$P_{N_2(g)}P_{H_2(g)}$		
	[N ₂ (g)]	$\left[\mathrm{H}_{2}(\mathrm{g})\right]^{3}$		$\frac{P_{N_{2}(g)}P_{H_{2}(g)}}{P_{NH_{3}(g)}}$		
	\square C P ² _{NH}	I ₃ (g)	D 🛛	$P_{N_2(g)}P_{H_2(g)}^3$		
	$\square C = \frac{P^2_{NH}}{P_{N_2(g)}P}$	$\overline{\overset{3}{H_2(g)}}$		$\frac{P_{N_2(g)}P^3_{H_2(g)}}{P^2_{NH_3(g)}}$		Q5
					(Total 1 mark)	
_						

L

	6. The expression for K_c for the equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is	Leave blank
	$K_{\rm c} = \frac{[{\rm SO}_3(g)]^2}{[{\rm SO}_2(g)]^2 [{\rm O}_2(g)]}$	
	What are the units of K_c in this equilibrium expression?	
	$\mathbf{X} \mathbf{A} \text{mol } \text{dm}^{-3}$	
	$\mathbf{B} \mathrm{mol}^2 \mathrm{dm}^{-6}$	
	$\mathbf{\Sigma}$ C dm ³ mol ⁻¹	
		0(
	\square D atm ⁻¹	Q6
	(Total 1 mark)	
	7. For the equilibrium	
	$2NO_2(g) \rightleftharpoons N_2O_4(g)$ $\Delta H = -57.2 \text{ kJ mol}^{-1}$	
	which one of the following changes would result in a different value of the equilibrium constant?	
	☑ A an increase in temperature	
	\square B a decrease in pressure	
	\square C an increase in pressure	
	D an increase in the concentration of $NO_2(g)$	Q7
	(Total 1 mark)	
	Use this space for any rough working. Anything you write in this space will gain no credit.	
l		

8.	Solutions of concentration 0.1 mol dm ⁻³ of iron(II) ions and silver(I) ions were mixed at	Leave blank
	room temperature and allowed to reach equilibrium.	
	$Fe^{2+}(aq) + Ag^{+}(aq) \rightleftharpoons Fe^{3+}(aq) + Ag(s)$	
	Which one of the following statements is true?	
	A as the equilibrium position was approached, the forward reaction became slower until it stopped.	
	B at the equilibrium position, no more $Ag(s)$ reacted with $Fe^{3+}(aq)$.	
	C at the equilibrium position, the rate of the forward reaction equalled the rate of the backward reaction.	
	\square D no Fe ³⁺ (aq) reacted with Ag(s) until the equilibrium position was reached.	Q8
	(Total 1 mark)	

9.	Thi volu	s qu ume	testion concerns four solutions, A to D. They were prepared by mixing equal s of 0.2 mol dm^{-3} solutions of two different substances. The substances were	Leave blank
		A	HCl(aq) and NaOH(aq)	
		B	HCl(aq) and NaCl(aq)	
		С	NH ₃ (aq) and NH ₄ Cl(aq)	
		D	CH ₃ COOH(aq) and CH ₃ CO ₂ Na(aq)	
	Sel	ect,	from A to D, the mixture which would:	
	(a)	hav	ve the lowest concentration of hydrogen ions	
	X	A		
	\mathbf{X}	B		
	X	С		
	\mathbf{X}	D	(1)	
	(b)	act	as a buffer of pH about 5	
	X	A		
	\mathbf{X}	B		
	X	С		
	X	D	(1)	
	(c)	hav	ve a chloride ion concentration of 0.2 mol dm^{-3} .	
	×	A		
	X	B		
	\mathbf{X}	С		
	X	D	(1)	00
			(1)	Q9
			(Total 3 marks)	

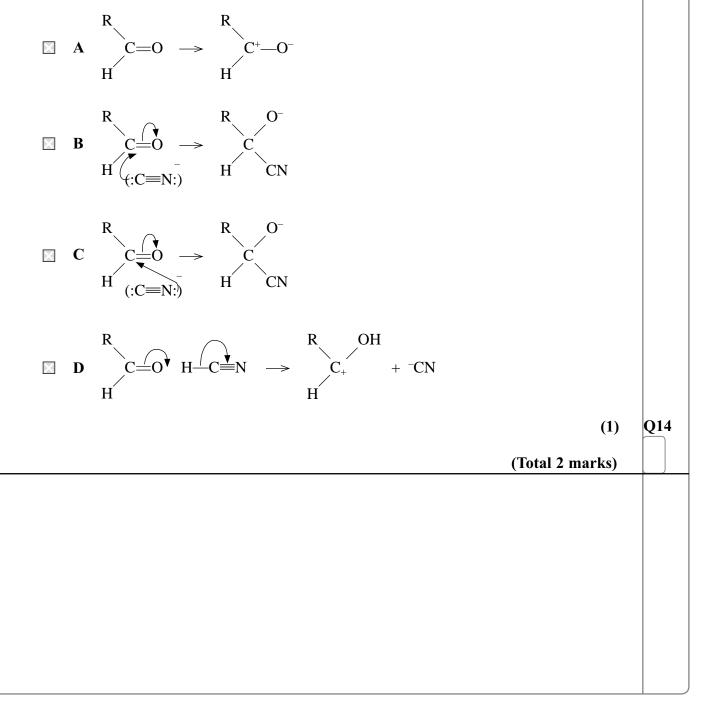
2 A	6	
⊠ B ⊠ C	6	
	C 8	
) 11	(1)
	What was the pH when 5 cm^3 of 1.00 mol dm ⁻³	a 25.05 cm ³ of 1.00 mol dm ⁻³ NaOH(aq) had been added to 3 HCl(aq)?
	3	
× B	6	
	C 8	
D D) 11	(1)
		pH range
	methyl violet	0–1.6
B	universal indicator	3–11
	C thymolphthalein	8.3–10.6
D D	alizarin yellow R	10.1–13.0
		(1)
		(Total 3 marks)

I

	Leave blank
11. Which one of the following organic compounds does not exist?	
\square A an ester which is a structural isomer of a carboxylic acid C ₃ H ₆ O ₂	
B a carboxylic acid which is a structural isomer of an ester $C_2H_4O_2$	
\square C an aldehyde which is a structural isomer of a ketone C ₃ H ₆ O	
\square D a ketone which is a structural isomer of an aldehyde C ₂ H ₄ O	Q11
(Total 1 ma	rk)
 12. This question concerns a proposed two-stage synthetic route to prepare butanam CH₃CH₂CH₂CONH₂ 	ide,
$\begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	
(a) A suitable starting material for this preparation would have the formula	
■ A CH ₃ CH ₂ CH ₂ COH	
\square B CH ₃ CH ₂ CH ₂ CH ₂ COOH	
\Box C CH ₃ CH ₂ CH ₂ COOH	
\square D CH ₃ CH ₂ CH ₂ CH ₂ OOH	
	(1)
(b) Each stage in the sequence produced a 50% yield of required product. What is minimum number of moles of the carboxylic acid which should be used in orde produce one mole of butanamide?	
A 0.25	
B 2.00	
C 2.50	
D 4.00	
	(1)
(c) Which of the following reagents is needed to convert the carboxylic acid into the a chloride?	ıcyl
A chlorine	
\square B phosphorus(V) chloride	
C hydrogen chloride	
\square D ethanoyl chloride	
	(1) Q12
(Total 3 mar	<u>ks)</u>

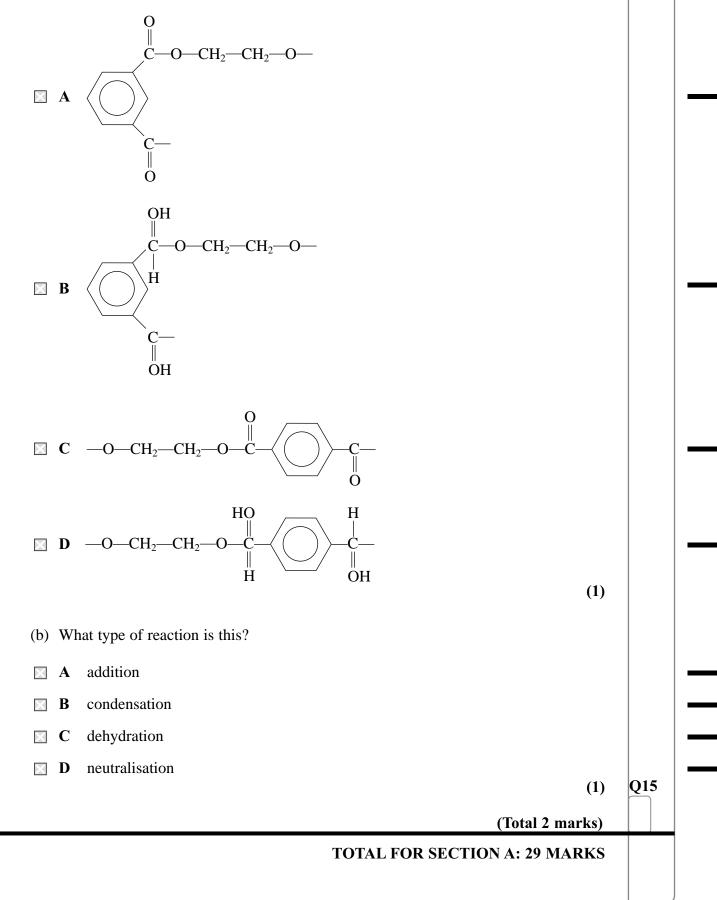
 13. This question concerns the following compounds containing four carbon atoms. A Butanoic acid, CH₃CH₂CH₂COOH B Batanone, CH₃COCH₂CH₃ C Propyl methanoate, HCOOCH₃CH₂CH₂COCI Select, from A to D, the compound that (a) can be made by the oxidation of a primary alcohol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nurr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) (1) (213 (Total 3 marks) 		Leave blank
 B Butanone, CH₃COCH₂CH₃ C Propyl methanoate, HCOOCH₂CH₂CH₃ D Butanoyl chloride, CH₃CH₂CH₂COCl Select, from A to D, the compound that (a) can be made by the oxidation of a primary alcohol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would be expected to react most rapidly with ethanol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) (1) Q13 (Total 3 marks) 	13. This question concerns the following compounds containing four carbon atoms.	
 C Propyl methanoate, HCOOCH₂CH₂CH3 D Butanoyl chloride, CH₃CH₂CH₂COCl Select, from A to D, the compound that (a) can be made by the oxidation of a primary alcohol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) (total 3 marks) Use this space for any rough working. Anything you write in this space will gain no 	\square A Butanoic acid, CH ₃ CH ₂ CH ₂ COOH	
Butanoyl chloride, CH ₃ CH ₂ CH ₂ COCl Select, from A to D, the compound that (a) can be made by the oxidation of a primary alcohol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. (a) (b) (b) (c) <td>B Butanone, $CH_3COCH_2CH_3$</td> <td></td>	B Butanone, $CH_3COCH_2CH_3$	
Select, from A to D, the compound that (a) can be made by the oxidation of a primary alcohol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (b) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) (c) D (1) (c) D (1) (c) D (1) (2) Would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) (2) Would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) (2) D (1) (2) D (1) (2) Use this space for any rough working. Anything you write in this space will gain no	\square C Propyl methanoate, HCOOCH ₂ CH ₂ CH ₃	
 (a) can be made by the oxidation of a primary alcohol. A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 	D Butanoyl chloride, $CH_3CH_2CH_2COCl$	
 A B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) (2) (1) (1) (2) (1) (1	Select, from A to D, the compound that	
 B C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) 	(a) can be made by the oxidation of a primary alcohol.	
 C D (1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 	\square A	
 D (1) (b) would be expected to react most rapidly with ethanol. A	B	
(1) (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) (2) (2) (2) (2) (3) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7	$\mathbf{\Sigma}$ C	
 (b) would be expected to react most rapidly with ethanol. A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 		
 A B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 	(1)	
 B C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 	(b) would be expected to react most rapidly with ethanol.	
 C D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 	\mathbf{A}	
 D (1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 	B	
(1) (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) Use this space for any rough working. Anything you write in this space will gain no	\Box C	
 (c) would have 4 different chemical shifts in its nmr spectrum and a broad absorption between 2500–3300 cm⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) 		
between 2500–3300 cm ⁻¹ in its infrared spectrum. A B C D (1) Q13 (Total 3 marks) Use this space for any rough working. Anything you write in this space will gain no	(1)	
 □ B □ C □ D (1) Q13 (Total 3 marks) Use this space for any rough working. Anything you write in this space will gain no		
 □ C □ D (1) Q13 (Total 3 marks) Use this space for any rough working. Anything you write in this space will gain no 	\blacksquare A	
D (1) Q13 (Total 3 marks) Use this space for any rough working. Anything you write in this space will gain no	⊠ B	
(1) Q13 (Total 3 marks)	C C	
(Total 3 marks)		
Use this space for any rough working. Anything you write in this space will gain no	(1)	Q13
	(Total 3 marks)	

I


73

Leave blank

- 14. This question concerns the nucleophilic addition reaction between a carbonyl compound and hydrogen cyanide, HCN.
 - (a) Which one of the following carbonyl compounds would produce a racemic mixture?
 - A CH₃COCH₃
 - \square **B** C₂H₅CHO
 - C HCHO
 - \square **D** C₂H₅COC₂H₅


(1)

(b) Which of the following best represents the first step of the mechanism for this reaction with an aldehyde?

- 15. This question concerns the formation of a polymer.
 - (a) Which one of the following is a possible formula of the repeat unit of a polymer formed from ethane-1,2-diol and benzene-1,4-dicarboxylic acid.

Use this space for any rough working. Anything you write in this space will gain no credit.

SECTION B Answer ALL the questions. Write your answers in the spaces provided. 16. This question is about the pineapple flavouring used in sweets. It is an ester with the formula C₃H₇COOCH₃, which can be broken down into butanoic acid and methanol when mixed with hydrochloric acid. The following equilibrium is set up: $C_{3}H_{7}COOCH_{3}(l) + H_{2}O(l) \rightleftharpoons C_{3}H_{7}COOH(l) + CH_{3}OH(l)$ (a) Give the name of this ester. (1) (b) Why does the ester have a comparatively low boiling point compared to the other three substances in the equation? (1) (c) What is the name given to this type of reaction? (1)

Sample Assessment Materials

77

Leave blank

*(d)	Suggest the reasons why manufacturers choose to use the chemically manufactured pineapple flavouring rather than the natural product and why consumers might prefer to choose the natural product.	

Edexcel GCE in Chemistry

Leave blank

(e) In an experiment, 10.2 g (0.10 mol) of the ester was mixed with 18 cm^3 of $1.0 \text{ mol} \text{ dm}^{-3}$ hydrochloric acid and left until equilibrium had been reached. The hydrochloric acid acts as a catalyst and contains 18 g (1 mol) of water. At equilibrium, 4.4 g of butanoic acid was found to be present.

Molar mass of butanoic acid = 88 g; assume the total volume at equilibrium is $30 \, \text{cm}^3$.

Give the expression for the equilibrium constant, K_c , for this equilibrium and calculate its value. Explain why it has no units.

Edaycal CCE in Chamistry	© Edaycal Limitad 2007	Sample Accessment Materials	70	
		(Total 12 marks)		
		(5)	Q	16

	thane reacts with steam in an endothermic reaction.
	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
(a)	State the effect on the value of the equilibrium constant of an increase in temperature.
	(1)
*(b)	Use your answer to (a) to explain the effect of this change on the position of equilibrium.
	(2)
	(Total 3 marks)

BLANK PAGE

		$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$ $\Delta H = -467 \text{ kJ mol}^{-1}$
(a)	Rew	rite the equation omitting spectator ions.
		(1)
(b)		gest the sign of the following entropy changes for this reaction. Justify each of answers.
	(i)	$\Delta S_{ m system}$
		(2)
	(ii)	$\Delta S_{ m surroundings}$
		(2)
	(iii)	$\Delta S_{ m total}$
		(1)

Leave blank

(c) A student carried out this experiment at five different temperatures in order to calculate the activation energy of the reaction. The student's laboratory record is shown below.

Method

Clean a strip of magnesium weighing 0.100 g with sand paper. Measure the temperature of 20 cm³ of 1.00 mol dm⁻³ hydrochloric acid in a 100 cm³ beaker. Add the magnesium ribbon, stir continuously, and time how long it takes for the magnesium to disappear. Repeat the experiment at four other temperatures.

Assumption: the initial rate of reaction is proportional to 1/time.

Temperature /ºC	Temperature /K	1/T /K ⁻¹	time /s	1/time /s ⁻¹	In 1/time		
24	297	3.37 × 10 ⁻³	45	0.0222	-3.81		
33	306	3.27 × 10 ⁻³	25	0.0400	-3.22		
45	318	3.14 × 10 ⁻³	11	0.0909	-2.40		
56	329	3.04 × 10 ⁻³	6	0.1667	-1.79		
10	283	3.53 × 10 ⁻³	122	0.0082	-4.80		

The Arrhenius equation is $\ln k = -E_a/R \times (1/T) + \text{constant}$

ln 1/time is proportional to ln k and so a graph of ln 1/time will have the same gradient as that of the Arrhenius plot of ln k against 1/Temperature

The student plotted the graph of ln 1/time against 1/Temperature and from this the activation energy, E_A , was calculated as + 51.3 kJ mol⁻¹.

(i) Suggest the reason for cleaning the magnesium ribbon with sand paper.

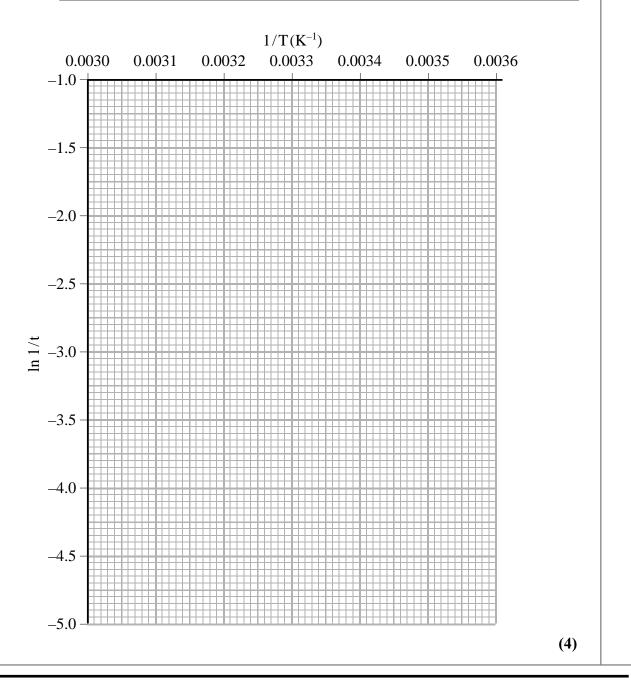
*(ii)	Calculate the number of moles of hydrochloric acid used up when all the magnesium reacts in one experiment. Hence comment on whether the change in concentration during the reaction will have a significant effect on the validity of the assumption that the initial rate of reaction is proportional to 1/time. How would you overcome this potential error?	Leave blank
	[Take the relative atomic mass of magnesium as 24 in this and subsequent calculations.]	
	(5)	

Leave blank

(iii) Use the value of ΔH and other information given in the question to calculate the temperature change in an experiment assuming no energy is lost to the surroundings. Hence comment on whether this change in temperature will have a significant effect. How would you overcome this potential error?

 $[\Delta H = -467 \text{ kJ mol}^{-1}]$.

heat produced = mass \times specific heat capacity \times change in temperature.


Assume that the specific heat capacity of the solution is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$]

•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
	(4)

(iv) The most difficult thing to measure accurately is the time it takes for the magnesium to disappear and the time measured can be up to 2 seconds out. Assuming this error, calculate the shortest time at 56 °C and the longest time at 10 °C for this reaction.

Complete the table for these times. Plot the two points on the grid below and join them with a straight line. From the gradient, which equals $-E_A/R$, of this line calculate another value for the activation energy.

Temperature / °C	Temperature /K	1/T /K ⁻¹	time /s	1/time /s ⁻¹	ln 1/time
56	329	3.04×10^{-3}			
10	283	3.53×10^{-3}			

Leave blank

(v)	If the reaction mixture is not stirred, the magnesium tends to float on the surface of the acid.	Leave blank
	Suggest how this would affect the measurements of the rate of the reaction.	
	(1)	
(vi)	Suggest two other improvements the student could do to this experiment to improve the accuracy or validity of the results.	
	(2)	
(vii)If ethanoic acid of the same concentration and at the same temperature is used instead of hydrochloric acid, explain how the rate would differ.	
	(1)	Q18
	(Total 24 marks)	

L

*19. One step in the production of nitric acid is the oxidation of ammonia.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

This is carried out at 900 °C over a platinum-rhodium catalyst and is an example of heterogeneous catalysis.

Explain in terms of collision frequency and collision energy how the rate would change if the temperature were increased, and which of these causes the greater effect.

What is the difference between a heterogeneous and a homogeneous catalyst? Suggest **one** advantage of using a heterogeneous catalyst in processes such as this.

	Q19
(Total 6 marks)	
TOTAL FOR SECTION B: 45 MARKS	

Edexcel GCE in Chemistry

Leave blank

			SECTION C									
		Ans	wer ALL the questions. Write your answers in the spaces provided.									
20.	 In moths a pheromone, P, acts as an attractant for the opposite sex. P has the molecular formula C₇H₁₂O. What can be deduced about the structure of P from the following information? 											
		(i)	1 mole of P reacts with 1 mole of Br_2 molecules to form a compound with the formula $C_7H_{12}OBr_2$.									
			When lithium tetrahydridoaluminate is reacted with \mathbf{P} a compound with the formula $C_7H_{14}O$ is formed.									
		(iii)	P forms an orange precipitate with 2,4-dinitrophenylhydrazine.									
			(1) When P is heated with Fehling's or Benedict's solution, the solution remains blue.									
		(v)	P is a Z-isomer.									
			(1)									

L

i) The infrared spectrum 1600 cm^{-1} .	ectrum of P has the following absorptions at wavenumbers above
1000 0111 1	3060 cm^{-1}
	2920 cm^{-1}
	1690 cm^{-1}
	1660 cm^{-1}
	(3)
	(1)
ii) The mass spect 29, but no peak	rum showed the presence of peaks at mass/charge ratios of 15 and
	rum showed the presence of peaks at mass/charge ratios of 15 and
	rum showed the presence of peaks at mass/charge ratios of 15 and
	rum showed the presence of peaks at mass/charge ratios of 15 and
	rum showed the presence of peaks at mass/charge ratios of 15 and

tion Leave	(c) Given that P has a straight chain of carbon atoms in its formula, use the information you have deduced above to suggest a displayed formula for the pheromone P.
(2) firm	 (d) How could you use a purified sample of the orange precipitate in (a)(iii) to confirm the formula of P?
(2) Q20	(2) (Total 16 marks)
RKS	TOTAL FOR SECTION C: 16 MARKS TOTAL FOR PAPER: 90 MARKS
	END

L

BLANK PAGE

BLANK PAGE

L

_

		_	_			-		_	_			-			_													
0 (8)	(18) 4.0 He	2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ъ.	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86		ted									
7		(17)	19.0	Ŀ	fluorine 9	35.5	ס	chlorine 17	79.9	Br	bromine 35	126.9	-	iodine 53	[210]	At	astatine 85		oeen repor		175	Lu	lutetium 71	[257]	ב	lawrencium 103		
9		(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Ъ	tellurium 52	[209]	P	polonium 84		116 have b iticated		173	Ą	ytterbium 70	[254]	°,	nobelium 102		
2		(15)	14.0	z	nitrogen 7	31.0	<u>م</u>	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112- ully auther	12	169	Ē	thulium 69	[256]		mendelevium 101		
4		(14)	12.0	υ	carbon 6	28.1			72.6	9 Ge	germanium 32	118.7	Sn	20 tì	207.2	P	lead 82	i	atomic nur but not fi		167	Ъ	erbium 68	[253]				
m		(13)	10.8	8	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	٩	indium 49	204.4	F	thallium 81		ients with		165	ĥ	holmium 67	[254]	ß	einsteinium 99		
		1						(12)	65.4	Zn	zinc 30	112.4	В	cadmium 48	200.6	Hg	mercury 80		Elerr		163	Q	dysprosium 66	[251]	ື	californium 98		
								(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0	Au	gold 79	[272]	Rg	111	159	đ	terbium 65	_	¥.	berkelium 97		
								(10)	58.7	ï	nickel 28	106.4	Pd	palladium 46	195.1	£	platinum 78	_	DS damstadtium	110	157	BG	gadolinium 64	[247]	E.	aurium 96		
										(6)	58.9	ვ	cobalt 27	102.9	Ъ	rhodium 45	192.2	<u>-</u>	iridium 77	[268]			152	Eu	europium 63	[243]	Am	americium 95
	1.0 H hydrogen	-						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	õ	osmium 76	[277]	Hs hassium	108	150			[242]	Pu	plutonium 94		
								(2)	54.9	Mn	manganese 25	[98]	Ч	technetium 43	186.2	Re	rhenium 75	-			[147]	Pm	promethium 61	[237]	ď	neptunium 93		
			mass	bol	umber	1		(9)	52.0	Ե	chromium 24	95.9	Wo	molybdenum 38	183.8	₹	tungsten 74	[366]	Sg seaborgium	106	144	PN	neodymium 60	238	⊃.	uranium 92		
		Key	ive atomic	mic sym	name (proton) r			(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73	[262]	Db dubnium	105	141	Pr	praseodymium 59	[231]	Pa	protactinium 91		
			relat	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	Rf rutherfordium	104	140	e.	cerium 58	232	Ę	thorium 90		
			-					(2)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lathanum 57	[227]	Ac* actinium	89		S						
2		(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra radium	88		ianide seri	ide series					
-		(1)	6.9	Ŀ	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	å	rubidium 37	132.9	S	caesium 55	[223]	Fr francium	87		* Lanth	* Actin					
	3 4 5 6 7	1.0 1.0 hydrogen	2 3 4 5 6 7 1.0 H hydrogen (2) Key 1 (13) (14) (15) (16) (17)	2 3 4 5 6 7 H hydrogen (2) Key 1 9.0 relative atomic mass 7 10.8 12.0 14.0 16.0 19.0	2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 7 5 6 7 7 5 6 7 7 5 6 7 7 7 7	2 1.0 H hydrogen (2) Key 1 (1) (1) (13) (14) (15) (16) (17) (18) (10) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (18) (10) (17)	2 2 4 5 5 5 6 7 10 10.0 14	2 2 (2) Key (2) Key (3) (14) (15) (16) (17) (13) (14) (15) (16) (17) (14) (15) (16) (17) (13) (14) (15) (17) (16) (17) (13) (14) (15) (16) (17) (13) (14) (15) (17) (16) (17) (13) (14) (15) (17) (16) (17) (13) (14) (15) (17) (17) (17) (17) (17) (17) (17) (17	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						$ \begin{array}{c} 1 \\ \hline 1 \\ \hline 2 \\ 2 \\$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

Centre												Surname		Initia	ll(s)
No.							Pape	er Refei	rence						
Candidate No.					6	C	H	0	5	/	1	Signature			
			Reference	。 05/1									Exam	niner's use	e only
		E	Zde	exc	el	G	GC	E					Team I	Leader's u	ise only
		C	hei	mis	try										
		Δ	dva	ince	h										
						al P	Princ	ciple	es o	f Cł	nem	nistry II		Question Number	Leave Blank
								-				ganic		Section A	
				Ni	trog	ren	Che	mis	trv			-			
					C	-			•	asse	ssn	nent)		Section B	
		Sa	mp	le A	sses	sme	ent I	Mat	eria	1				Section C	
		Ti	me:	1 h	our	40 1	min	utes							
		-	terials a Book	require let	ed for (exami	nation	- It Ni		cluded	l with	question papers	<u>s</u>		
Instruction															
In the boxes a Check that ye	above,	write y	our ce	ntre nu	mber,	candi	date ni	umber	, your	surna	me, ii	nitial(s) and sign	nature.		
Answer ALL	the qu	estions	s. Wri	te your	answe	ers in						uestion paper.			
Some question through the b											e your	mind, put a lin	ne		
Do not use p				•						37.					
Informatio	n for (Candi	dates												
The marks for There are 24												d brackets: e.g.	(2).		
There are 28	pages	in this	questi	on pap							18 90).			
Candidates n	nay use	a calc	ulator.												
Advice to C															
												our responses to 24(c), 24(d)(i)			
24(d)(ii). Th	ese que	estions	are in	dicated	l with	an ast	erisk.	Qual	ty of	writte	n con	nmunication inc	ludes		
clarity of exp	ressior	i, ine s	iructui	ie and j	presen	tation	or ide	as and	ı gram	imar, j	punct	uation and spell	nng.		

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

L

_

Edexcel GCE in Chemistry

edexcel

Total

Turn over

			SECTION A	Leave blank
n	ninu	tes	ALL the questions in this section. You should aim to spend no more than 25 on this section. For each question, select one answer from A to D and put a e box (⊠). If you change your mind, put a line through the box (云) and then mark your new answer with a cross (⊠).	
	Eac		f the questions or incomplete statements in this section is followed by four gested answers, A, B, C and D. Select the BEST answer in each case.	
1.	In a	a sta	ndard hydrogen electrode	
	×	A	the hydrogen gas is at one atmosphere pressure	
	×	B	a solution of 1 mol dm ⁻³ sulfuric acid is used	
	×	С	a temperature of 273 K is maintained	
	×	D	a piece of shiny platinum foil is used	Q1
			(Total 1 mark)	
2.	For	a re	edox reaction to be thermodynamically feasible, E_{cell} must be	
	×	A	positive	
	×	B	negative	
	×	С	greater than +0.3 V	
	×	D	more negative than -0.3 V	Q2
			(Total 1 mark)	

3. The star +1.51 V.	ndard electrode potential for the electrode system based on the equation below is	Leav blan
	$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \implies Mn^{2+}(aq) + 4H_2O(l)$	
Which	of the following statements about the electrode system is correct?	
A	the electrode potential at pH 5 is $+1.51$ V.	
🖾 B	Mn ²⁺ (aq) is acting as an oxidising agent.	
C	changing the concentration of $Mn^{2+}(aq)$ would cause a change in the electrode potential.	
D 🛛	the electrode used in this half-cell is made of manganese.	Q3
	(Total 1 mark)	
4		
	of the following is always proportional to E_{cell} for a chemical reaction?	
A	$\Delta H_{ m r}$	
B	$\Delta S_{ m system}$	
C	$\Delta S_{ m surroundings}$	
D	$\Delta S_{ m total}$	Q4
D	(Total 1 mark)	Q4
		Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4

I

5.				usly oxidised with a nethanoic acid and	an acidified solution containing dichromate(VI) chromic(III) ions.	Leave blank
	(a)	Wl	nat are the oxida	tion numbers of ca	rbon in methanol and methanoic acid?	
			Methanol	Methanoic acid		
	\times	Α	-1	+1		
	\mathbf{X}	B	-2	+2		
	\mathbf{X}	С	+1	-1		
	\times	D	+2	-2	(1)	
	(b)	Но	w many moles of	of methanol react w	ith one mole of dichromate(VI) ion, $Cr_2O_7^{2-}$?	
	\times	Α				
	X	В	3⁄4			
	X	С	11/2			
	×	D	3			
					(1)	Q5
					(Total 2 marks)	
					(Total 2 marks)	
6.	Wł	nich	of the following	will not act as a light	gand in the formation of complexes?	
6.	Wł		of the following C ₆ H ₅ NH ₂	will not act as a lig		
6.				will not act as a lig		
6.	\mathbf{X}	A B	$C_6H_5NH_2$	will not act as a lig		
6.	×	A B	C ₆ H ₅ NH ₂ CH ₃ NH ₂	will not act as a lig		Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a li		Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a lig	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a lig	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a lig	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	will not act as a lig	gand in the formation of complexes?	Q6

7.	Which of the following ground state electron configurations corresponds to an element most likely to form an oxide with catalytic properties?	Leave blank
	\square A $1s^2 2s^2$	-
	\square B 1s ² 2s ² 2p ⁶ 3s ²	-
	\square C $1s^2 2s^2 2p^6 3s^2 3p^2$	-
	$\square \mathbf{D} 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^5 \ 4s^2$	Q7 –
	(Total 1 mark))
8.	X, Y, and Z are three different compounds from the list below. X and Y react together to form an ester. X and Z also react to give the same ester as X and Y, but less readily.	0
	Compound Y could be	
	A propanoyl chloride	-
	B propanoic acid	-
	$\mathbf{\Sigma}$ C propan-1-ol	-
	D propanal	Q8 –
	(Total 1 mark))
9.	Which of the following isomers of $C_4H_{10}O$ has a chiral centre?	
	▲ Butan-1-ol	-
	B Butan-2-ol	-
	\mathbb{Z} C 2-methylpropan-1-ol	-
	D 2-methylpropan-2-ol	Q9 –
	(Total 1 mark))
τ	Use this space for any rough working. Anything you write in this space will gain no credit.	

I

10. When the colourless liquid chlorobenzene is shaken with bromine water, the chlorobenze becomes a yellow orange colour. What is the interpretation of this?	ene Leav	
\mathbf{X} A an addition compound of chlorobenzene and bromine has formed.		
\blacksquare B the chlorine atom has been replaced by a bromine atom.		
$\mathbf{\Sigma}$ C a hydrogen atom has been replaced by a bromine atom.		
\square D the bromine is more soluble in chlorobenzene than in water.	Q10	
(Total 1 mar	'k)	
11. What class of organic compound has a characteristic smell and gives a solution in wa with a pH of about 10?	ter	
A arene		
B amine		
\square C aldehyde		
D carboxylic acid	Q11	
(Total 1 mar	'k)	
12. Which chemical term best describes what happens, when butylamine is added to a soluti of a copper(II) salt?	on	
\mathbf{X} A precipitation		
\mathbf{B} redox		
\square C proton transfer		
\square D complex formation	Q12	
(Total 1 mar	k)	

12 The substance of formula (OCH CH OOCC II COOCH CH OOCC II CO) is a	Leave blank
13. The substance of formula $(OCH_2CH_2OOCC_6H_4COOCH_2CH_2OOCC_6H_4CO)_n$ is a \square A polyester	
\mathbf{B} natural oil or fat	
\square C detergent	
\square D protein	Q13 =
(Total 1 mark)	
14. The optical isomers of alanine, $CH_3CH(COOH)NH_2$	
A have different melting points	
\square B rotate the plane of plane polarised light in opposite directions	
\square C react at different rates with ethanoyl chloride, CH ₃ COCl	-
D both occur naturally in protein molecules	Q14 =
(Total 1 mark)	
15. The rate equation for the reaction between aqueous sodium hydroxide and 2-chloro-2-methylpropane isRate = k[2-chloro-2-methylpropane]	
The first step in the mechanism of this substitution reaction is	
 B electrophilic attack by OH⁻ ions on the carbon atom in the C–Cl bond C the breaking of the C–Cl bond to form a carbocation 	
 D the simultaneous making of a O–C bond as the C–Cl bond breaks 	Q15 -
(Total 1 mark)	
Use this space for any rough working. Anything you write in this space will gain no credit.	

	hen hydrogen cyanide, HCN, is added to ethanal, CH_3CHO , the resulting solution has effect on the plane of polarisation of plane polarised light.	Leave blank
Tł	is is because	
\times	A ethanal is not chiral	
\mathbf{X}	B the product is not chiral	
\times	C the intermediate is planar	
\times	D the product is a racemic mixture	Q16
	(Total 1 mark)	
17. Tv	vo compounds may be similar in that they both have	
A	dative covalent bonds in their molecules	
В	at least one bond angle of 120° in each molecule	
С	non-polar molecules	
D	linear molecules	
S	elect from A – D , the similarity between each of the compounds below.	
(a)	Benzene, C_6H_6 and cyclohexane, C_6H_{12}	
\times	Α	
\times	В	
\times	C	
\times	D (1)	
(b) Hydrogen cyanide, HCN, and carbon dioxide, CO_2	
\times	Α	
\times	B	
\times	C	
\times	D (1)	Q17
	(Total 2 marks)	

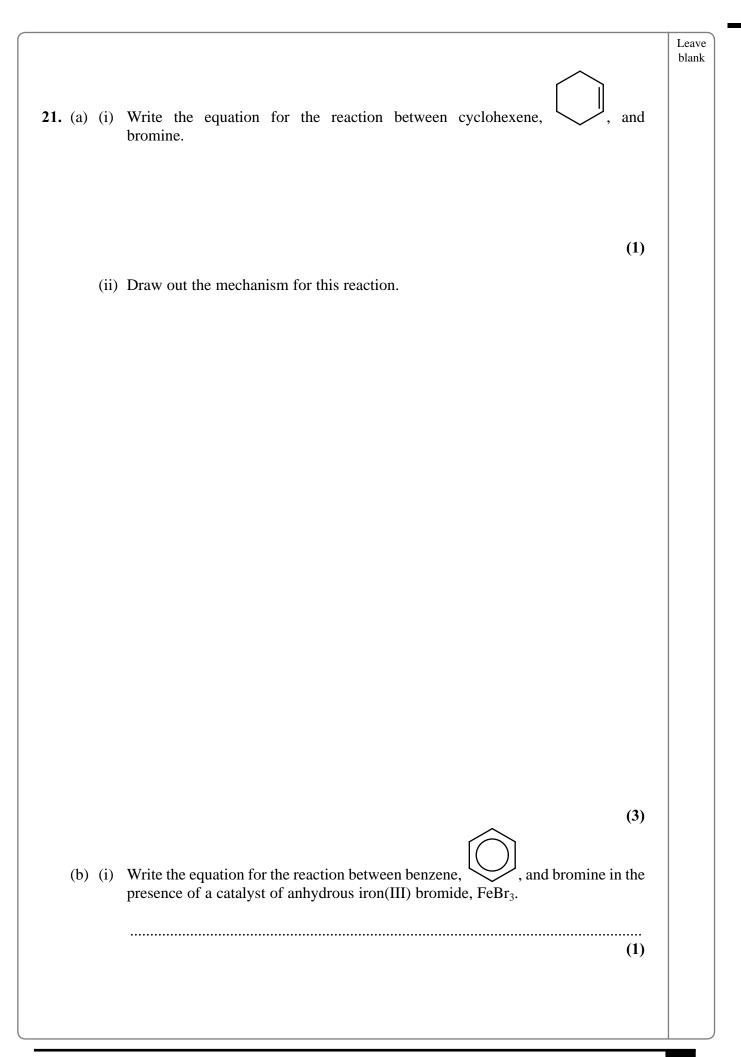
18.	Thi	s question is about the following organic compounds:	Leave blank
- •	A	Benzene, C_6H_6	
	B	Glycine, NH ₂ CH ₂ COOH	
	С	Propene, CH ₃ CHCH ₂	
	D	Propanone, CH ₃ COCH ₃	
	Sel	ect, from A–D , the compound which would	
	(a)	be a solid at room temperature	
	X	Α	
	×	В	
	×	C	
	×	D	
		(1)	
	(b)	give a salt by reaction with sodium hydroxide	
	\times	Α	
	\times	В	
	\times	C	
	\times	D (1)	

Use this space for any rough working. Anything you write in this space will gain no credit.

			Leave blank
(c)	give a sulfonic acid by reaction with fuming sulfuric acid		
\mathbf{X}	Α		
\mathbf{X}	В		
\mathbf{X}	C		
\mathbf{X}	D	(1)	
(d)	form a precipitate when reacted with 2,4-dinitrophenylhydrazine		
X	Α		
×	В		
×	C		
×	D		0.10
		(1)	Q18
		(Total 4 marks)	

19. Select,	from A–D , the type of interaction which best describes the bonding between	Leave blank
(a) adj	acent polymer chains in $\{CH_2 - CH_2\}_n$	
A	dative covalent	
🖾 B	London forces	
C	ion-dipole	
D D	ionic (1)	
(b) coj	oper ions and ammonia in $Cu(NH_3)_4^{2+}$	
A	dative covalent	
🗵 B	London forces	
C	ion-dipole	
D D	ionic	010
	(1)	Q19
	(Total 2 marks) TOTAL FOR SECTION A: 25 MARKS	
Use this :		
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	

L


SECTION B Answer ALL the questions. Write your answers in the spaces provided. 20. A firm claims that their iron tablets contain 10 mg of Fe^{2+} per tablet. A chemist wishes to check this by titration using potassium manganate(VII) and dilute sulfuric acid. $Fe^{2+}(aq) \Rightarrow Fe^{3+}(aq) + e^-$ MnO₄⁻⁻(aq) + 8H⁺(aq) + 5e⁻ \Rightarrow Mn²⁺(aq) + 4H₂O(1) (a) Why is the acid necessary? (1) (1) (b) How many moles of Fe^{2+} react with one mole of MnO_4^{--} ? (1)

Leave blank

) Each tablet contains 10 mg of Fe^{2+} .
(i) How many moles of Fe^{2+} are in one tablet?
(1)
 (ii) Use your answer to (i) to calculate the volume of 0.010 mol dm⁻³ potassium manganate(VII) solution that would be needed to react with one tablet.
(2)
(iii) Is this a suitable volume to verify the integrity of the firm's claim? How would you alter the experiment to obtain a more suitable volume?
(1)

I

		blank
*(d)	The recommended consumption of Fe^{2+} per day is 14 mg. The tolerable upper level of consumption of Fe^{2+} per day is 45 mg.	
	The "10 mg iron tablets" produced by a pharmaceutical company contain between 9 and 11 mg of Fe^{2+} .	
	Discuss whether or not this range of iron content is acceptable.	
	(2)	Q20
	(Total 8 marks)	

()	Draw out the machanism for this reaction. Include an equation for the formation
(11)	Draw out the mechanism for this reaction. Include an equation for the formation of the species that attacks the benzene ring.
(iii)	(4) Write an equation to show how the catalyst is regenerated
(iii)	(4) Write an equation to show how the catalyst is regenerated.
(iii)	
	Write an equation to show how the catalyst is regenerated.
	Write an equation to show how the catalyst is regenerated.
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds in both reactions.
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds in both reactions.
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds in both reactions.
Сог	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds in both reactions.
Cor	Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds in both reactions.

*(ii) why the two intermediates formed in these first steps then react differently?		Leav blar	
	 (3)		
(d) State the number of peaks in the proton nmr spectrum of the product of the react between cyclohexene and bromine.	ion		
	 (1)	Q2	1
(Total 17 mar	ks)		

2. (a	a)	(i)	Give the electron configuration of:	
			Fe [Ar]	
			Fe ²⁺ [Ar]	
			(1)	
		(ii)	Draw the structure of the hexaaquairon(II) ion, $[Fe(H_2O)_6]^{2+}$, clearly showing its shape.	
			(1)	
		(iii)	Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions.	
			(1)	
		(iv)	State what you would see if the product mixture in (iii) is left to stand in air.	
			(1)	

	$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}$ $E^{\ominus} = -0.44 \mathrm{V}$
*(i) D	befine the term standard electrode potential with reference to this electrode.
•	
•	
•	(3)
\$(ii) E	xplain why the value of E^{\ominus} suggests that the iron will react with an aqueous
	blution of an acid to give Fe^{2+} ions and hydrogen gas.
•	
•	
•	
	(2)
	tate why E^{\oplus} values cannot predict that a reaction will occur, only that it is ossible.
1	
•	
•	(1)
	(Total 10 marks)

Leave

L

blank

(1)

	Leave blank
(ii) Compound A reacts with hexanedioyl dichloride to produce a polymer.	
Draw the structure of the repeating unit of this polymer.	
(2)	
*(iii) Suggest why this polymer cannot be made into strong fibres.	
(2)	
(d) Classify the two polymerisation reactions.	
Poly(ethene)	
Fibre(1)	Q23
(Total 10 marks)	
(Total 10 marks) TOTAL FOR SECTION B: 45 MARKS	

L

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

24. Read the passage below carefully and answer the questions which follow.

Stained glass and gemstones

Many medieval churches contain some very fine examples of stained glass coloured with transition metal compounds. Blue and green colours result from adding cobalt or copper oxides to molten glass. Copper oxide is added to colour the glass red, but it must be mixed with a strong reducing agent to give this colour. The red colour is so strong that it can appear black, and may need to be coated as a thin layer on top of colourless glass.

Like glass, many gemstones are based on silica and some on alumina. They are also coloured by transition metal compounds. A solid matrix of either silica, SiO_2 , or alumina, Al_2O_3 , has some of the silicon or aluminium replaced by a small quantity of a transition metal. Replacing about 5% of the aluminium ions in alumina with chromium(III) gives ruby, important in laser production. Replacement of aluminium ions by a mixture of iron(III) and titanium(III) gives sapphire. The metal coming in must have the same charge and about the same radius as the aluminium.

Based on 'Colour, A Chemical Overview' Chemistry Review volume 5, number 5, May 1996 written by Ken Kite

(\cdot)	Define what is meant by a transition element
(i)	Define what is meant by a transition element .
	(1)
	(1)
*(ii)	Explain the processes which lead to hydrated transition metal ions being coloured.
	(3)
) (i)	Give the formulae of the copper oxide which causes the red colour in glass.
) (i)	Give the formulae of the copper oxide which causes the red colour in glass. (1)
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects.
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group

L

*(c)		by would the addition of iron(II) oxide, FeO, or $osmium(III)$ oxide, Os_2O_3 , not lace aluminium ions in alumina?
		(2)
*(d)	(i)	Starting with a chromium(III) compound, state how it could be converted into a chromium(VI) compound, a chromium(II) compound and a complex ion.
		You should include equations and colour changes in your answer.

	Leave blank
(7)	

I

b	*(ii) Discuss the chemistry of the use of chromium salts in breathalysers. Explain	
	why they are no longer used and describe the chemistry of one modern type of breathalyser.	(11)
	(4)	
	(Total 20 marks) TOTAL MARKS FOR SECTION C: 20 MARKS TOTAL MARKS FOR PAPER: 90 MARKS	
	END	

BLANK PAGE

L

_

	0 (8)	(18) 4.0 helium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ъ	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		pa							
	7	(11)	19.0	Ŀ	fluorine 9	35.5	ບ	chlorine 17	79.9		bromine 35	126.9	-	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported		175	Lu	lutetium 71	[257]	Lr Jawrencium	103
	9	(16)	16.0	0	oxygen 8	32.1		sulfur 16	79.0	Se	selenium 34	127.6	Ъ	tellurium 52	[209]	Po	polonium 84		-116 have b	ווורמופח	173	γÞ	ytterbium 70	[254]	No	102
	2	(15)	14.0	z	nitrogen 7	31.0	٩	phosphorus 15	74.9	As	a	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112	טער ווטר ועווץ מענוופוורוכמרפט	169	T	thulium 69		Md	101
	4	(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	20 tị	207.2	Pb	lead 82	į	atomic nu	DUL NOL 1	167	Ъ	erbium 68	[253]	Fm	
	e	(13)	10.8	8	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		nents with		165	РH	holmium 67	[254]	Cf Es californium einsteinium	99
ients			0					(12)	65.4	Zn	zinc 30	112.4	5	cadmium 48	200.6	Hg	mercury 80				163	Q	dysprosium 66	[251]	Cf californium	98
The Periodic Table of Elements								(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0	٩n	gold 79	[272]	Rg	111	159	đ	terbium 65	[245]	Bk berkelium	67
le of								(10)	58.7	ī	nickel 28	106.4	Р	palladium 46	195.1	Ł	platinum 78		ŝ	darmstadtrum 110	157	Pg	gadolinium 64		S unit	
c Tab								(6)	58.9	ვ	cobalt 27	102.9	ዲ	45	192.2	느	iridium 77	[268]	Ĭ	109	152	E	europium 63	[243]	Am	95
riodi		1.0 hydrogen 1						(8)	55.8	Fe	1.1440	101.1	Ru	ruthenium 44	190.2	ŝ	osmium 76	[277]	SH .	108	150	Sm	samarium 62	[242]	Pu plutonium	94
ne Pe								(2)	54.9	Cr Mn	manganese 25	[86]	Ч	technetium 43	186.2	Re	rhenium 75		Bh	107	[147]	Pm	promethium 61	[237]	U Np Pu Am	93
F			mass	pol	umber]		(9)	52.0	Շ	chromium 24	95.9	Wo	molybdenum 38	183.8	≥	tungsten 74	[366]	Sg	seaborgium 106	144	PN	neodymium 60	238	uranium	92
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	đ	niobium 41	180.9	Ta	tantalum 73	_		105	141	Ъ	praseodymium neodymium promethium 59 60 61	[231]	Pa protactinium	91
			relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ħ	hafnium 72	[261]	Rf	rutherfordium 104	140	e C	cerium 58	232	Th thorium	90
								(2)	45.0	Sc	scandium 21	88.9	۲	yttrium 39	138.9	La*	lathanum 57	[227]	Ac*	actinium 89		SS				
	2	(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	ö	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra	88		* Lanthanide series	* Actinide series			
	-	(1)	6.9	ij	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	ď	rubidium 37	132.9	പ	caesium 55	[223]	F	87		* Lanth	* Actin			

C Sample mark schemes

General marking guidance	125
Unit 1: The Core Principles of Chemistry	127
Unit 2: Application of Core Principles	143
Unit 4: General Principles of Chemistry I	159
Unit 5: General Principles of Chemistry II	179

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Unit 1: The Core Principles of Chemistry

Section A

Question Number	Question	
1	Going across a period in the Periodic Table from left to right, the GENERAL that	trend is
	A the bonding in the element itself changes from ionic to covalent	
	B the number of neutrons in the nucleus increases	
	C the first ionisation energy decreases	
	D the metallic character increases	
	Correct Answer	Mark
	В	1

Question Number	Question	
2	The electron configurations of argon, iron, chlorine and one other element below, but not in order. Which one represents the unnamed element? A 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ² B 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ C 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ D 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	are given
	Correct Answer	Mark
	С	1

Question Number	Question	
3	Buckminsterfullerene is a carbon molecule with formula C_{60} which can t ions in its structure. Which of the following compounds of buckminster would give a line of mass/ charge ratio at 837.3 in a mass spectrometer? A Na ₄ C ₆₀ B K ₃ C ₆₀ C Ca ₃ C ₆₀ D Ag C ₆₀	
	Correct Answer	Mark
	В	1

Question Number	Question	
4 (a)	Which equation is NOT balanced?	
	Correct Answer	Mark
	A	1

Question Number	Question	
4 (b)	Which equation shows incomplete combustion?	
	Correct Answer	Mark
	D	1

Question Number	Question	
5	Which of the equations shown below represents the reaction for which standard enthalpy change of formation, $\Delta H_{f~298}^{e}$, for ethanol, C ₂ H ₅ OH. E at 156 K and boils at 352 K.	
	$\begin{array}{l} A \ 2C(g) + 6H(g) + O(g) \rightarrow C_2H_5OH(g) \\ B \ 2C(s) + 3H_2(g) + O2(g) \rightarrow C2H_5OH(l) \\ C \ 2C(s) + 3H_2(g) + O(g) \rightarrow C_2H_5OH(g) \\ D \ 2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l) \end{array}$	
	Correct Answer	Mark
	D	1

Question Number	Question	
6 (a)	Which fuel, A, B, C or D, produces most energy per gram on complete comb	ustion?
	Correct Answer	Mark
	Α	1

Question Number	Question	
6 (b)	Scientists give governments advice on technical issues. What informatic scientists use when advising governments on the choice of one of these fue aim was to minimise carbon dioxide production? A mass of carbon per gram of fuel B mass of carbon per kilojoules produced C number of kilojoules produced per gram D number of kilojoules produced per mole	
	Correct Answer	Mark
	В	1

Question Number	Question	
7	Which of the following equations represents the first ionisation of sulfur? A $S(s) + e^{-} \rightarrow S^{-}(g)$ B $S(g) + e^{-} \rightarrow S^{-}(g)$ C $S(s) \rightarrow S^{+}(g) + e^{-}$ D $S(g) \rightarrow S^{+}(g) + e^{-}$	
	Correct Answer	Mark
	D	1

Question	Question	
Number		
8	Which element marked on this graph is a halogen?	
	Correct Answer	Mark
	В	1

Question Number	Question	
9 (a)	The first ionisation energies of five consecutive members of the same gro Periodic Table, in order of increasing atomic number.	oup in the
	Correct Answer	Mark
	A	1

Question Number	Question	
9 (b)	The first five ionisation energies of an s-block element.	
	Correct Answer	Mark
	В	1

Question Number	Question	
9 (c)	The first five ionisation energies of a noble gas.	
	Correct Answer	Mark
	D	1

Question Number	Question	
10 (a)	Which hydrocarbon has the same empirical formula as its molecular formula	?
	Correct Answer	Mark
	C	1

Question Number 10 (b)	QuestionWhich has a molecular ion in the mass spectrum at mass/charge ratio = 58?	
	Correct Answer	Mark
	D	1

Question Number	Question	
10 (c)	Which is neither an alkane nor an alkene?	
	Correct Answer	Mark
	A	1

Question	Question	
Number		
10 (d)	Which could be 2-methylpropane?	
	Correct Answer	Mark
	D	1

Question Number	Question	
11(a)	Which compound could be made from one of the others in an addition react	ion?
	Correct Answer	Mark
	A	1

Question Number 11 (b)	Question Which compound has E-Z isomers?	
	Correct Answer C	Mark 1

Question Number	Question	
12	 Chemists investigating the mechanism of the reaction of ethene and bromin that the first step was the addition of Br⁺. To test this, they reacted bro ethene in the presence of sodium chloride. If their theory about the first step of the reaction was correct, which prod form as well as 1,2-dibromoethane? A CH₂BrCH₂Na B CH₂BrCH₂Cl C CH₂ClCH₂Cl D CH₂NaCH₂Na 	mine with
	Correct Answer	Mark
	B	1

Question Number	Question	
13	Which of the following is the correct name for the compound below? CH_3 CI C=C H CH_3	
	A Z-3-chlorobut-2-ene B E-3-chlorobut-2-ene C E-2-chlorobut-2-ene D Z-2-chlorobut-2-ene	
	Correct Answer	Mark
	C	1

Section **B**

Question Number	Question		
14 (a)	Write the equation for the reaction, including state sy	ymbols.	
	Acceptable Answers	Reject	Mark
	$CuCO_3(s) + H_2SO_4(aq) \rightarrow CO_2(g) + CuSO_4(aq) + H_2O(l)$		1

Question Number	Question	
14 (b)	The experiment was carried out using 0.025 moles of sulfuric acid of conce 2.0 mol dm ⁻³ . What volume of this sulfuric acid was used? A 5.0 cm ³ B 12.5 cm ³ C 50.0 cm ³ D 125.0 cm ³	entration
	Correct Answer	Mark
	В	1

Question Number	Question		
14 (c) (i)	It is usual to react the sulfuric acid with a slight excess of copper(II) carbonate. Calculate the mass of copper(II) carbonate needed if a 10% excess is required. [Molar mass of copper(II) carbonate = 123.5 g mol ⁻¹]		
	Acceptable Answers	Reject	Mark
	(0.025 x 123.5) x 1.1 =(1)		2
	3.396/ 3.40 / 3.4g (g) (1) OR		
	0.025 mol copper carbonate = 3.087/3.09 (g)(1) 3.087 +10% = 3.396/ 3.40/ 3.4 (g)		
	Full marks for correct answer with no working		

Question Number	Question		
14 (c) (ii)	A student doing this experiment chose to use a bal attempt to work accurately. Was this choice of balance necessary from the point your answer.		
	Acceptable Answers	Reject	Mark
	No, as copper carbonate is in excess	No, as molar mass is only to one decimal place	1

Question Number	Question		
14 (d)			
	Acceptable Answers	Reject	Mark
	Filter to remove excess copper carbonate		1

Question Number	Question	
14 (e) (i)	What is the molar mass of $CuSO_4.5H_2O$?	
	Answer	Mark
	249.6	1

Question Number	Question		
14 (e) (ii)	3.98 g of $CuSO_4.5H_2O$ crystals were obtained in the experiment Calculate the percentage yield in this experiment.		
	Acceptable Answers	Reject	Mark
	Expected yield = 0.025 x 249.6 (1) = 6.24g		2
	% yield = (100 x 3.98/6.24)= 63.8/63.78% (1)		

Question Number	Question		
15 (a) QWC (i) & (iii)	Describe the bonding in the element magnesium a conductor of electricity.	nd explain why it	s a good
	Acceptable Answers	Reject	Mark
	<pre>(Lattice of) positively charged ions/ ions with 2+charge (1) held together by (electrostatic) attraction to delocalised electrons (1) Delocalised electrons / free electrons/ electrons in sea of electrons are free to move and carry charge / current (1)</pre>	descriptions of delocalised	3

Question Number	Question		
15 (b) (i)	Draw a diagram (using dots or crosses) for the ions in magnesium fluoride showing ALL the electrons and the ionic charges on: the magnesium ion		
	Acceptable Answers	Reject	Mark
	Mg^{2+} shown as 2,8 (1)		1

Question Number 15 (b) (ii)	Question the fluoride ion		
	Acceptable Answers F shown as 2,8 (1)	Reject	Mark 1

Question Number	Question		
15 (c)	Under what conditions does magnesium fluoride conduct electricity? Explain your answer.		
	Acceptable Answers	Reject	Mark
	When molten/ when dissolved in water so that ions can move/ lattice breaks down (1)	Dissolved in other solvents. Reference to atoms or molecules rather than ions.	1

Question Number	Question		
15 (d) (i)	Use the data above to estimate the percentage isotopic composition of the sample of magnesium. Hence calculate the average atomic mass of this sample of magnesium.		
	Acceptable Answers	Reject	Mark
	$\frac{77\%^{24}\text{Mg}, 10\%^{25}\text{Mg}, 13\%^{26}\text{Mg} (1)}{\text{Average atomic mass}} = \frac{((77 \times 24) + (10 \times 25) + (13 \times 26))}{100} = 24.36 = 24.4g (1)$		2

Question Number	Question		
15 (d) (ii)	Why do the three isotopes have the same chemical properties?		
	Acceptable Answers	Reject	Mark
	Have same electron configuration	Same number of electrons in outer orbit	1

Question Number	Question		
15 (e) (i)	Oceanographers studying plankton found that a sample of seawater contained 1.20 nanomol dm ⁻³ of chlorophyll, $C_{55}H_{77}MgN_4O_5$. What mass of magnesium would be present in 1.00 cm ³ of this sample of seawater? Give your answer to THREE significant figures.		
	Acceptable Answers	Reject	Mark
	1.20 x 10^{-9} mol of Mg per dm ³ (1) (1.20 x 10^{-9} x 24.3 x 10^{-3}) = 2.92 x 10^{-11} / 29.2 x 10^{-12} (g) (1) max 1 for more/less than 3 significant figures eg 2.916		2

Question Number	Question	
15 (e) (ii)	X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll.X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique.Suggest which element is most difficult to locate.	
	Correct Answer	Mark
	Hydrogen because it has the least number of electrons per atom	1

Question Number	Question		
16 (a)	Calculate the number of molecules in 50 dm ³ of nitrogen gas under these conditions.		
	The Avogadro constant = 6.02x10 ²³ mol ⁻¹ .		
	Acceptable Answers	Reject	Mark
	$(6.02 \times 10^{23} \times 50) =$		1
	24		
	1.25×10^{24} / 1.254×10^{24} / 1.26×10^{24}		1
	Allow TE from a		

Question Number	Question		
16 (b)	Calculate the mass of sodium azide that would produce 50 dm ³ of nitrogen gas.		
	Acceptable Answers	Reject	Mark
	$M_{r} = (23 + 42) = 65(1)$ $Mass = (2 \times 65 \times \frac{50}{72}) (1)$ $= 90/90.3g (1) \qquad \text{Allow TE from (c)}$	Wrong unit eg kg	3

Question Number	Question	
16 (c)	What will happen to the temperature in the airbag when the reaction occ	urs?
	Correct Answer	Mark
	decrease	1

Question Number	Question		
16 (d) QWC (i) & (iii)	The airbag must be strong enough not to burst in an accident. An airbag which has burst in an accident is hazardous if the sodium azide in it has decomposed. Explain why this is so.		
	Acceptable Answers	Reject	Mark
	Sodium is hazardous (1) May go on fire with water/ produces flammable gas with water/ produces explosive gas with water/ produces strong alkali with water/ reacts with moisture on skin and becomes hot /corrosive (1) 2 nd mark depends on reference to sodium	Unspecific comments about sodium being poisonous / toxic / flammable without reference to water.	2

Question Number	Question		
17 (a) (i)	Give the mechanism for REACTION 1.		
	Acceptable Answers	Reject	Mark
	(1) Intermediate (1) Interme	Inaccurate placing of curly arrows	3

Question No	Question		
17 (a) (ii)	Explain why compound A and NOT its structural isome REACTION 1.	r is the major p	roduct in
	Acceptable Answers	Reject	Mark
	The secondary carbocation/carbonium ion is more stable than the primary (so forms when H ⁺ adds) OR The secondary carbocation/carbonium ion is stable because the methyl groups are electron donating		1

Question Number	Question		
17 (a) (iii)	Name compound A formed in REACTION 1.		
	Acceptable Answers	Reject	Mark
	2-bromopropane		1

Question Number	Question		
17 (b)	What is added in reaction 2 to make the product $CH_2(OH)C$	CH(OH)CH ₃ ?	
	Acceptable Answers	Reject	Mark
	Acidified potassium manganate(VII) / potassium permanganate / KMnO4((aq))		1

Question Number	Question		
17 (c)	Complete the balanced equation for the formation of p USING DISPLAYED FORMULAE .	oly(propene) in	Reaction 3
	Acceptable Answers	Reject	Mark
	$n(CH_2=CHCH_3) \longrightarrow \begin{pmatrix} H & H \\ -C & -C \\ + & -C \\ H \\ H \end{pmatrix}$	CH₃ in unbranched chain	2
	balanced and double bond broken (1) CH_3 on side chain (1)		

Question Number	Question		
17 (d)	Poly(propene) fibres can be used to make fleece which is used by several horse racing courses to prevent the ground becoming frozen. State ONE advantage of using poly(propene) instead of natural fibres of similar cost.		
	Acceptable Answers	Reject	Mark
	Poly(propene) is non-biodegradable / won't break down in wet conditions (1)		1

Question Number	Question	
17 (e) (i)	One stage in the mechanism of REACTION 5 is shown below.	
	$CH_3CH_2CH_3 + Cl^{\bullet} \rightarrow CH_3CH_2CH_2^{\bullet} + HCl$	
	What is this step?	
	Correct Answer	Mark
	propagation	1

Question Number	Question		
17 (e) (ii)	Give the name OR formula of the trace product present is gives evidence for this mechanism.	n the final mixtu	re which
	Acceptable Answers	Reject	Mark
	C ₆ H ₁₄ / hexane / Structural, displayed or skeletal formulae of hexane		1

Question Number	Question	
18 (a) (i)	 Galculate the energy change which took place. The specific heat capacity of the solution is 4.20 J g⁻¹K⁻¹. Which is the correct value for the energy change in joules? 	
	Correct Answer	Mark
	4410	1

Question	Question	
Number		
18 (a) (ii)	How many moles of copper(II) nitrate were used in the experiment?	
	Correct Answer	Mark
	0.015	1

Question Number	Question		
18 (a) (iii)	Calculate the enthalpy change for the reaction. You should your answer.	l include a sign a	nd units in
	Acceptable Answers	Reject	Mark
	(-4.41/ 0.015) = - 294 kJ mol ⁻¹ Value (1) Negative sign and units (1) TE for answer to (i)/ answer to (ii)		2

Question Number	Question		
18 (a) (iv) QWC (iii)	Suggest TWO changes you would make to the EQUIPMEN the accuracy of the result.	T used in order t	to improve
	Acceptable Answers	Reject	Mark
	Any two of: Use an insulated container/(expanded) polystyrene cup Use a lid Use a thermometer calibrated to at least 0.5 °C		2

Question Number	Question		
18 (b) (i) QWC (i) & (iii)	the student used 2 g rather than 1 g of magnesium.		
	Acceptable Answers	Reject	Mark
	No effect, as all copper nitrate reacts anyway. (1)		2
	Enthalpy change is based on mass of solution heating up / SHC of the metal is very low. (1)		

Question Number	Question	
18 (b) (ii) QWC (i) & (iii)	The heat losses that occurred from the student's beaker.	
	Correct Answer	Mark
	Yes, temperature rise is smaller than it should be(1)	2
	So enthalpy change less negative (1)	

Question Number	Question		
18 (c)	The temperature in the self-heating can needs to increase by 60 °C to produce a hot drink. Suggest a change you could make to the mixture in the experiment in (a) to produce a greater temperature rise. You are NOT expected to do a calculation.		
	Acceptable Answers	Reject	Mark
	Use more concentrated solution (with correspondingly more magnesium).	-	1

Question Number	Question		
19 (a)	On the following outline of a Born-Haber cycle complet putting in the formula and state symbol for the appropri- name of the enthalpy change at D. $ \begin{array}{c c} Cu^{2+}(g) & 2Br^{-}(g) & C\\ \hline B & & & & & \\ B & & & & & \\ \hline C & & & & & \\ \hline \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & & \\ \hline \hline C & & & & \\ \hline \hline \hline C & & & & \\ \hline \hline \hline C & & & & \\ \hline \hline \hline C & & & & \\ \hline \hline \hline C & & & & \\ \hline \hline \hline C & & & & \\ \hline \hline \hline C & & & & \\ \hline \hline \hline C &$		
	Acceptable Answers	Reject	Mark
	A Cu(g) B Cu ⁺ (g) C 2Br(g) 2 marks for all correct but max 1 if state symbols wrong/ missing 1 mark for 2 correct D $\Delta H_{\rm f}^{(\Theta)}$ / (standard) enthalpy (change) of formation (of CuBr ₂) (1)		3

Question Number	Question		
19 (b)	Use the data to calculate a value for the lattice energy of copper(II) bromide. Give a sign and units in your answer.		romide.
	Acceptable Answers	Reject	Mark
	$\Delta H_{f} = \Delta H_{a(Cu)} + E_{m1(Cu)} + E_{m2(Cu)} + 2 \times \Delta H_{a(1/2 \text{ Br2})} + 2 \times E_{aff(Br)} + \Delta H_{latt}$ OR Lattice energy = D-(other enthalpy changes) (1) Can be shown using the numbers $= -141.8 - (338.3 + 746 + 1958 + 2x111.9 + 2x-342.6) = -141.8 - 2580.9$ $= -2722.7 = -2723 \text{ (kJ mol}^{-1})$ (2) max 1 if no multiples of 2 for Br max 2 (out of 3) if positive sign		3

Question Number	Question		
19 (c) (i)	What does this suggest about the nature of the bonding in copper(II) bromide?		de?
	Acceptable Answers	Reject	Mark
QWC	Not 100 % ionic/ has some covalent character	Answers where it is not clear that bonding has some intermediate character, but not entirely ionic or covalent	1

Question Number	Question		
19 (c) (ii)	Draw a diagram to show how the smaller copper ion alters the shape of the larger bromide ion.		
	Acceptable Answers	Reject	Mark
	Non-spherical bromide / negative ion with bulge towards copper / positive ion (1)		1

Unit 2: Application of Core Principles of Chemistry

Section A

Question Number	Question	
1	Which of the following best describes the molecular shape of carbon dioxid A Linear B Trigonal planar C Triangular D V-shaped	le, CO ₂ ?
	Correct Answer	Mark
	A	1

Question Number	Question	
2	Which of the following species is polar? A NH ₃ B BF ₃ C SO ₃ D CO ₃ ²⁻	
	Correct Answer	Mark
	A	1

Question Number	Question	
3	Polar liquids are affected by electric fields. For which of the following liqu a jet of the liquid be affected by an electric field?	ids would
	A hexane B cyclohexane C cyclohexene D cyclohexanol	
	Correct Answer	Mark
	D	1

Question Number	Question	
4	What are the intermolecular forces in methanal, HCHO? A London forces only B hydrogen bonds and London forces C permanent dipole - permanent dipole only D permanent dipole - permanent dipole and London forces	
	Correct Answer	Mark
	D	1

Question Number	Question	
5	Which of the following substances is likely to be insoluble in water? A methanol, CH ₃ OH B ethanol, CH ₃ CH ₂ OH C fluoromethane, CH ₃ F D hydrogen fluoride, HF	
	Correct Answer	Mark
	C	1

Question Number	Question	
6	The following liquids have a similar number of electrons per molecule. Sug is likely to have the highest boiling point? A CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ B (CH ₃) ₃ COH C CH ₃ CH ₂ CH(OH)CH ₃ D CH ₃ CH ₂ CH ₂ CH ₂ OH	gest which
	Correct Answer	Mark
	D	1

Question Number	Question	
7	Which concentrated acid should be used to dissolve a carbonate of a Group carry out a flame test? A ethanoic acid B hydrochloric acid C nitric acid D sulfuric acid	2 metal to
	Answer	Mark
	В	1

Question Number	Question	
8	What colour does a barium salt give in a flame test? A colourless B green C red D yellow-red	
	Correct Answer	Mark
	В	1

Question Number	Question	
9	Separate flame tests are carried out with lithium, sodium, potassium, n calcium and strontium salts. How many of these metal ions would colour red? A 1 B 2 C 3 D 4	
	Correct Answer	Mark
	C	1

Question Number	Question	
10	A Group 2 element reacts vigorously with water to produce a soluble which forms a white precipitate when neutralised by sulfuric acid an carbonate which is very stable to heat. The element could be A magnesium B calcium C strontium D barium	
	Correct Answer	Mark
	D	1

Question Number	Question		
11	The Group 2 metals, considered in order of increasing atomic number decrease in A first ionisation energy B nuclear charge C chemical reactivity D ionic radius	er, show	a
	Correct Answer	Mark	
	Α	1	

Question Number	Question	
12	When a Group 1 metal nitrate is heated, brown fumes are observed. The n be A lithium B sodium C rubidium D caesium	netal could
	Correct Answer	Mark
	A	1

Question Number	Question	
13	Methyl orange is red in acidic solutions and yellow in alkaline solutions. A colour of the indicator at the end point of a titration of aqueous sodium solution with hydrochloric acid?	
	A red B pink C orange D yellow	
	Correct Answer	Mark
	C	1

Question Number	Question	
14	The volume, in cm ³ , of 0.25 mol dm ⁻³ hydrochloric acid required to neu cm ³ of 0.125 mol dm ⁻³ barium hydroxide solution, Ba(OH) ₂ (aq), is A 25 B 50 C100 D 200	itralise 100
	Correct Answer	Mark
	C	1

Question Number	Question	
15	What is the oxidation number of SULFUR in sodium tetrathionate, Na ₂ S ₄ O ₆ ? A - $\frac{1}{2}$ B +1 $\frac{1}{2}$ C +2 $\frac{1}{2}$ D + 5	,
	Correct Answer	Mark
	C	1

Question Number	Question	
16	Which of the following statements is FALSE?A iodine is more electronegative than bromine.B fluorine is more electronegative than chlorine.C metallic elements tend to react by loss of electrons.D chlorine is more electronegative than sulfur.	
	Correct Answer	Mark
	A	1

Question Number	Question	
17	A commercial production of iodine involves the reduction of a solution of iodate(V) ions, IO_3^- , with a theoretical quantity of hydrogen sulfite ions, HSO_3^- . The equation for the reaction may be written $xIO_3^- + yHSO_3^- \longrightarrow zSO_4^{2^-} + I_2 + 3H^+ + H_2O$	
	What are the balancing numbers x, y and z? A 5,2,2 B 2,5,2 C 2,5,5 D 5,5,2	
	Correct Answer	Mark
	C	1

Question Number	Question	
18	An organic compound is found to react with sodium metal and to react with sodium dichromate(VI), but not to decolourise bromine water, nor to sodium carbonate solution. The liquid could be A ethanol B ethane C ethanoic acid D ethene	
	Correct Answer	Mark
	A	1

Question Number	Question	
19	Which of the following is not a greenhouse gas? A CH ₄ B CO ₂ C H ₂ O D N ₂	
	Correct Answer	Mark
	D	1

Question Number	Question	
20	Which of the following fuels has the smallest carbon footprint? A petrol made from crude oil B hydrogen made from methane C ethanol made from sugar D coal	
	Correct Answer	Mark
	C	1

Question Number	Question	
21	Which of the following would not lead to a greater sustainability in an process? A using a catalyst that improves atom economy B running the reaction at a higher temperature C using biofuels to run the process D recycling waste products	industrial
	Correct Answer	Mark
	В	1

Question Number	Question	
22 (a)	The reason that 50% sulfuric acid was used rather than concentrated sulfuric ac because concentrated sulfuric acid	
	A would oxidise some of the bromide ions to bromine B would cause the reaction to go too fast. C would react with the bromide ions to produce hydrogen bromide. D is too hazardous a chemical.	
	Correct Answer	Mark
	Α	1

Question Number	Question	
22 (b)	The reaction mixture was distilled. The impure distillate did NOT contain A butan-1-ol B 1-bromobutane C sodium bromide D hydrogen bromide	
	Correct Answer	Mark
	C	1

Question Number	Question	
22 (c)	The impure 1-bromobutane was washed with concentrated hydrochloric acid and shaken in a tap funnel with a base to remove acidic impurities. Which of the following would remove acidic impurities without reacting with the 1-bromobutane. A calcium hydroxide solution B sodium hydroxide solution C calcium chloride solution D sodium hydrogencarbonate solution	
	Correct Answer	Mark
	D	1

Question Number	Question	
22 (d)	The 1-bromobutane was washed with water, dried and distilled. Wh following is the correct procedure? A heat the liquid to 118 °C and collect the substance given off B heat the liquid to 100 °C and collect the substance given off C boil the liquid and collect the fraction that boils off between 116 and 12 D boil the liquid and collect the fraction that boils off between 98 and 102	0 °C
	Correct Answer	Mark
	D	1

Question Number	Question	
23	 Which of the following changes in conditions would increase the equilibrium yield of ethanoic acid? A increase pressure B decrease pressure 	
	C increase temperature D add a catalyst	
	Correct Answer	Mark
	A	1

Question Number	Question	
24 (a)	propanone from propanal and propan-1-ol	
	A B C D	
	Correct Answer	Mark
	D	1

Question Number	Question	
24 (b)	propanal from propanone and propan-1-ol A B C D	
	Correct Answer	Mark
	C	1

Question Number	Question	
24 (c)	propan-1-ol from propanal and propanone A B C D	
	Correct Answer	Mark
	A	1

Section **B**

Question Number	Question		
25 (a)	Draw the structural formulae of the two isomers with molecular formula C_3H_8O which are alcohols. Give the names of these alcohols.		
	Acceptable Answers	Reject	Mark
	$CH_3CH_2CH_2OH$ (1)		4
	Propan-1-ol (1)		
	$CH_3CH(OH)CH_3$ (1)		
	Propan-2-ol (1)		

Question Number	Question		
25 (b) (i)	Give the name and structural formula of the carbo primary alcohol C ₃ H ₈ O is fully oxidised.	xylic acid formed	when the
	Acceptable Answers	Reject	Mark
	Propanoic acid (1) $CH_3CH_2CO_2H$ (1)		2

Question Number	Question		
25 (b) (ii)	State the reagents used for this oxidation.		
	Acceptable Answers	Reject	Mark
	Either sodium dichromate ((VI)) or potassium manganate(VII) (1) Sulfuric acid (1) dependent on 1 st mark Ignore concentrated/dilute		2

Question Number	Question		
26 (a) (i)	Name the type of bonding that exists between water mo	lecules.	
	Acceptable Answers	Reject	Mark
	Hydrogen/H bonding (1)		1

Question Number	Question		
26 (a) (ii)	Draw a diagram to show this bonding. Use display molecules. Clearly mark and label the bond angle BETW		
	Acceptable Answers	Reject	Mark
	$ \begin{array}{c} H \\ H \\ H \\ H \end{array} $ (1)	OH-O if not in a straight line	2
	Either Bond angle 180° around the hydrogen bonded H atom, i.e. OH—O		

Question Number	Question		
26 (b) (i)	Draw the boron trichloride molecule, BCl ₃ , making its angle on your diagram.	shape clear. Mar	k the bond
	Acceptable Answers	Reject	Mark
	trigonal planar diagram (1)		2
	IGNORE name		
	120 ° marked on diagram (1) - <i>stand alone</i>		

Question Number	Question		
26 b (ii) QWC (i) & (iii)	Explain why boron trichloride has this shape.		
	Acceptable Answers	Reject	Mark
	There are 3 bond pairs (of electrons) around the B atom (1) And no lone pairs (1) They repel to a position of minimum repulsion/maximum separation (1)	maximum repulsion	3

Question Number	Question		
26 (b) (iii)	Explain why a B-Cl bond is polar.		
	Acceptable Answers	Reject	Mark
	B and Cl have different electronegativities / Cl more electronegative than B OR different electronegativities explained		1

Question Number	Question		
26 (b) (iv)	Explain why a BCl_3 molecule is non-polar.		
	Acceptable Answers	Reject	Mark
	Dipoles (or vectors) cancel/symmetrical molecule/ centres of positive and negative charges coincide (1) <i>IGNORE</i> polarity cancels	Charges cancel	1

Question Number	Question		
26 (b) (v)	Name the strongest intermolecular force between boron trichloride molecules.		
	Acceptable Answers	Reject	Mark
	London forces / instantaneous dipole-Induced dipole/dispersion /v der Waals Temporary or instantaneous can be used instead of induced (1)	"dipole" forces/ permanent dipole/ dipole-dipole vdw	1

Question Number	Question		
27 (a) (i)	Why was ethanol added to each test-tube?		
	Acceptable Answers	Reject	Mark
	Make halogenoalkanes miscible with silver nitrate/AgNO3 solution		1
	OR to dissolve halogenoalkanes/acts as solvent (1)		

Question Number	Question		
27 (a) (ii)	The mechanism of this reaction is similar to tha halogenoalkanes and aqueous hydroxide ions.	t of the reactio	n between
	What feature of a water molecule enables it to act as a Suggest the mechanism for the reaction between water represent 1-iodobutane as RCH ₂ I).		
	Acceptable Answers	Reject	Mark
	Feature of water molecule:		4
	The oxygen atom has a lone pair of electrons (1) Either an $S_N 2$ mechanism Arrow from O of water towards C atom (1) and arrow from C-I σ bond to I atom (1) transition state with no charge (1) Ignore final loss of H ⁺ and formation of I ⁻ Or an $S_N 1$ mechanism Arrow from C-I σ bond to I (1) intermediate with + charge and I ⁻ ion (1) arrow from O of water to C+ of intermediate (1) Ignore final loss of H ⁺		

Question Number	Question		
27 (a) (iii)	What is the colour of the precipitate in the third test-to A cream B white C yellow D grey		
	Correct Answer	Reject	Mark
	C		1

Question Number	Question		
27 (a) (iv)	Name the precipitate which forms slowly in the FIRST t	est-tube.	
	Acceptable Answers	Reject	Mark
	Silver((I)) chloride (1) Ignore capitals		1

Question Number	Question		
27 (a) (v)	Ammonia solution is added to the precipitate in the F you would observe.	IRST test-tube. Des	scribe what
	Acceptable Answers	Reject	Mark
	Precipitate dissolves/disappears/clears (1)	Precipitate changes colour	1

Question Number	Question		
27 (a) (vi) QWC (i-iii)	Suggest, why the rates of hydrolysis of the three halo terms of bonding and kinetics.	ogenoalkanes are d	ifferent, in
	Acceptable Answers	Reject	Mark
	Must be given in a logical sequence	Cl is more electronegative	3
	C-I bond is weakest (and break more easily) (1)	than I	
	Because the iodine atom is the largest / greatest	OR	
	bond length (1)	Cl forms a	
	So lowest activation energy (1)	carbocation	
		more readily	
	Or reverse argument: e.g. C-Cl bond strongest	than C-I	

Question Number	Question		
27 (b) QWC (i) & (iii)	One method of the manufacture of alcohols is to read example. $C_2H_4(g) + H_2O(g) \longrightarrow C_2H_5OH(l)$ Suggest TWO reasons why this method is prefer halogenoalkanes.		
	Acceptable Answers	Reject	Mark
	Any two from three: 100 % atom economy (1) higher cost of halogenoalkanes/halogenoalkanes are made from alcohols (1) alkenes readily available from oil (1)		2

Question Number	Question		
27 (c) (i)	State the hazard when the heating is stopp	oed.	
	Acceptable Answers	Reject	Mark
	suck back (1)		1

Question	Question		
Number			
27 (c) (ii)	How would you minimise the risk associated with this h	azard?	
	Acceptable Answers	Reject	Mark
	remove delivery tube from water/add Bunsen valve		1
	(1)		

Section C

Question Number	Question		
28 (a) (i)	The record of measurements reveals faults both in pro- measurements. State ONE fault in each of these.	cedure and the	recording of
	Acceptable Answers	Reject	Mark
	Procedure: Only one titration carried out/ no check on accuracy of titration OR 1000 cm ³ volume to large to fit in titration flask (1)		2
	Recording: Did not record burette readings to 0.05 cm ³ / 1 decimal place / sufficient precision / recording only one significant figure in a titration reading (1)		

Question	Question		
Number			
28 (a) (ii)	Calculate the number of moles of sodium thiosulfate used in the titration.		
	Acceptable Answers	Reiect	Mark
	/ ceeptable / instrend		

Question Number	Question		
28 (a) (iii)	Use your answer to (ii) to calculate the number of moles of iodine reacted.		
	Acceptable Answers	Reject	Mark
	2.3x10 ⁻⁵ / 0.000023		1
	OR candidates answer to (ii) divided by 2		

Question Number	Question		
28 (a) (iv)	Deduce the concentration of chlorine, in mol dm^{-3} , in the	e swimming pool	water.
	Acceptable Answers	Reject	Mark
	2.3x10 ⁻⁵ / 0.000023 mol dm ⁻³		1
	OR candidates answer to (iii)		

Question Number	Question		
28 (b) (i) QWC (i) & (iii)	State and explain the type of reaction that occurs when using the example of iron.	chlorine attacks a	a metal,
	Acceptable Answers	Reject	Mark
	Redox as chlorine removes/gains electrons from the metal (and is reduced) (1) And metal gives/loses electrons to the chlorine (and is oxidised) (1)		2
	Redox is essential in order to score both marks The gain / loss of electrons can be awarded from two ionic half equations.		

Question Number	Question		
28 (b) (ii)	Suggest ONE other reason why the use of chlorine is und	esirable in swimn	ning pools.
	Acceptable Answers	Reject	Mark
	Chlorine is (highly) toxic/poisonous/irritant OR chlorine has an unpleasant smell (1)		1

Question Number	Question		
28 (b) (iii)	Give the formula for calcium chlorate(I).		
	Acceptable Answers	Reject	Mark
	$Ca(ClO)_2$ (1)		1

Question Number	Question		
28 (b) (iv) QWC (ii)	Chlorine dioxide, ClO_2 , undergoes a disproportionation reaction when it reacts with water. $4ClO_2 + 2H_2O \rightarrow HClO + 3HClO_3$ Explain, in terms of oxidation numbers, why this is a disproportionation reaction.		
	Acceptable Answers	Reject	Mark
	Cl is oxidised from +4 (in ClO_2) to +5 (in $HClO_3$) (1) and is reduced (from +4) to +1 (in $HClO$) (1)		2

Question Number	Question		
28 (c) QWC (i-iii)	Discuss and explain the science community's advice that used in aerosols, foams and refrigerants. Support your a equations.		
	Acceptable Answers	Reject	Mark
QWC	Any of the five points below as long as they are logically connected and use correct scientific terminology plus 1 mark for an equation to a maximum of 6 marks. • CFCs are greenhouse gases • because their dipole moment changes when they vibrate • and so contribute to global warming • depletion of the ozone layer • causes less ozone to absorb UV radiation (from the sun) /increase in UV reaching the earth's surface • causes skin cancer / mutations • CFCs (decompose photolytically to) produce free radical chlorine atoms/ Cl radicals • Recognition that one Cl radical can cause the destruction of many thousands of ozone molecules / or mention of chain reaction Equations Cl [•] + $O_3 \rightarrow ClO^•$ + O_2 ClO [•] + O [•] $\rightarrow Cl^•$ + O_2 Either equation or other relevant equation (1)		6

Unit 4: General Principles of Chemistry I

Section A

Question Number	Question	
1 (a)	The hydrolysis of 1-bromobutane using hydroxide ions $C_4H_9Br(l) + OH(aq) \rightarrow C_4H_9OH(l) + Br(aq)$	
	Correct Answer	Mark

Question	Question	
Number		
1 (b)	The decomposition of the benzenediazonium ion $C_6H_5N_2^+(aq) + H_2O(l) \rightarrow C_6H_5OH(aq) + N_2(g) + H^+(aq)$	
	Correct Answer	Mark
	A Collecting and measuring the volume of gas	1

Question Number	Question	
1 (c)	The reaction of acidified potassium manganate(VII) with propan-2-opropanone and manganese(II) sulphate	ol to give
	Correct Answer	Mark
	B Colorimetry	1

Question Number	Question	
1 (d)	the catalytic decomposition of hydrogen peroxide	
	Correct Answer	Mark
	A Collecting and measuring the volume of gas	1

Question Number	Question	
2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ccording to
	Correct Answer	Mark
	D	1

Question Number	Question	
3	For the reaction between sodium bromate(V) and sodium bromide solution, the rate equation is: Rate = k[BrO ₃ ⁻][Br ⁻][H ⁺] ² When the concentrations of all three reactants are doubled, the rate wil by a factor of A 4 B 6 C 8 D 16	
	Correct Answer	Mark
	D	1

Question Number	Question	
4 (a)	Calculate ΔS _{system} , in J mol ⁻¹ K ⁻¹ , for this reaction. A - 175.8 B + 175.8 C - 64.2 D + 64.2	
	Correct Answer	Mark
	В	1

Question Number	Question	
4 (b)	Calculate $\Delta S_{surroundings}$, in J mol ⁻¹ K ⁻¹ , for this reaction at 298 K. A - 192 B + 192 C - 0.192 D + 0.192	
	Correct Answer	Mark
	A	1

Question Number	Question	
5	For the equilibrium, $N_{2}(g) + 3H_{2}(g) = 2NH_{3}(g)$ Which is the correct expression for K_{p} ? $A = \frac{\left[NH_{3}(g)\right]^{2}}{\left[N_{2}(g)\right]\left[H_{2}(g)\right]^{3}} = B = \frac{P_{N_{2}(g)}P_{H_{2}(g)}}{P_{NH_{3}(g)}}$ $C = \frac{P^{2}_{NH_{3}(g)}}{P_{N_{2}(g)}P^{3}_{H_{2}(g)}} = D = \frac{P_{N_{2}(g)}P^{3}_{H_{2}(g)}}{P^{2}_{NH_{3}(g)}}$	
	Correct Answer	Mark
	$C = \frac{P^2_{NH_3(g)}}{P_{N_2(g)}P^3_{H_2(g)}}$	1

Question Number	Question	
6	The expression for K_c for the equilibrium $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$ is	
	$K_{c} = \frac{[SO_{3}(g)]^{2}}{[SO_{2}(g)]^{2}[O_{2}(g)]}$	
	What are the units of K _c in this equilibrium expression? A mol dm ⁻³ B mol ² dm ⁻⁶ C dm ³ mol ⁻¹ D atm ⁻¹	
	Correct Answer	Mark
	C	1

Question Number	Question	
7	For the equilibrium $2NO_2(g) = N_2O_4(g)$ $\Delta H = -57.2 \text{ kJ mol}^{-1}$ which one of the following changes would result in a different value of the equilibrium constant? A an increase in temperature B a decrease in pressure C an increase in pressure D an increase in the concentration of NO ₂ (g)	he
	Correct Answer	Mark
	A	1

Question Number	Question	
8	 Solutions of concentration 0.1 mol dm⁻³ of iron(II) ions and silver(I) ions of at room temperature and allowed to reach equilibrium. Fe²⁺(aq) + Ag⁺(aq) = Fe³⁺(aq) + Ag(s) Which one of the following statements is true? A As the equilibrium position was approached, the forward reaction slower until it stopped. B At the equilibrium position, no more Ag(s) reacted with Fe3+(aq). C At the equilibrium position, the rate of the forward reaction ecorate of the backward reaction. D No Fe³⁺(aq) reacted with Ag(s) until the equilibrium position was reached 	on became qualled the
	Correct Answer	Mark
	С	1

Question Number	Question	
9 (a)	Have the lowest concentration of hydrogen ions	
	Correct Answer	Mark
	C $NH_3(aq)$ and $NH_4CL(aq)$	1

Question Number	Question	
9 (b)	Act as a buffer of pH about 5	
	Correct Answer	Mark
	D CH ₃ COOH(aq) and CH ₃ CO ₂ Na(aq)	1

Question Number	Question	
9 (c)	Have a chloride ion concentration of 0.2 mol dm ⁻³	
	Correct Answer	Mark
	B HCl(aq) and NaCl(aq)	1

Question Number	Question	
10 (a)	What was the pH when 24.95 cm ³ of 1.00 mol dm ⁻³ NaOH(aq) had been a cm ³ of 1.00 mol dm ⁻³ HCl(aq). A 3 B 6 C 8 D 11	dded to 25
	Correct Answer	Mark
	A	1

Question Number	Question	
10 (b)	What was the pH when 25.05 cm ³ of 1.00 mol dm ⁻³ NaOH(aq) had been a cm ³ of 1.00 mol dm ⁻³ HCl(aq). A 3 B 6 C 8 D 11	dded to 25
	Correct Answer	Mark
	D	1

Question Number	Question		
10 (c)	Which one of the following indicators would be MOST suitable to use to determine the end point of this titration?		
		pH range	
	A methyl violet	0-1.6	
	B universal Indicator	3-11	
	C thymolphthalein	8.3-10.6	
	D alizarin yellow R	10.1-13.0	
	Correct Answer		Mark
	C		1

Question Number	Question	
11	Which one of the following organic compounds does NOT exist? A an ester which is a structural isomer of a carboxylic acid $C_3H_6O_2$ B a carboxylic acid which is a structural isomer of an ester $C_2H_4O_2$ C an aldehyde which is a structural isomer of a ketone C_3H_6O D a ketone which is a structural isomer of an aldehyde C_2H_4O	
	Correct Answer	Mark
	D	1

Question Number	Question	
12 (a)	A suitable starting material for this preparation would have the formula A CH ₃ CH ₂ CH ₂ COH B CH ₃ CH ₂ CH ₂ CH ₂ COOH C CH ₃ CH ₂ CH ₂ COOH D CH ₃ CH ₂ CH ₂ COOH	
	Correct Answer	Mark
	C	1

Question Number	Question	
12 (b)	Each stage in the sequence produced a 50% yield of required product. We minimum number of moles of the carboxylic acid which should be used produce one mole of butanamide? A 0.25 B 2.00 C 2.50 D 4.00	
	Correct Answer	Mark
	D	1

Question Number	Question	
12 (c)	Which of the following reagents is needed to convert the carboxylic acid into the acyl chloride?	
	A chlorine B phosphorus(V) chloride C hydrogen chloride D ethanoyl chloride	
	Correct Answer Mark	
	B 1	

Question Number	Question	
13 (a)	Can be made by the oxidation of a primary alcohol.	
	Correct Answer	Mark
	A Butanoic acid, $CH_3CH_2CH_2COOH$	1

Question Number 13 (b)	Question Would be expected to react most rapidly with ethanol.	
	Correct Answer	Mark

Question Number	Question	
13 (c)	Would have 4 different chemical shifts in its nmr spectrum and an absorption at 2500 - 3300 cm ⁻¹ in its infrared spectrum. Use the data booklet as a source of information.	
	Correct Answer	Mark
	A Butanoic acid, CH_3CH_2COOH	1

Question Number	Question	
14 (a)	Which one of the following carbonyl compounds would produce a racemic A CH ₃ COCH ₃ B C ₂ H ₅ CHO C HCHO D C ₂ H ₅ COC ₂ H ₅	mixture?
	Correct Answer	Mark
	В	1

Question Number	Question	
Number 14 (b)	Which of the following best represents the first step of the mecha reaction with an aldehyde? $A \qquad \stackrel{R}{\underset{H}{\longrightarrow}} C = O \qquad \xrightarrow{R} \stackrel{C}{\underset{H}{\longrightarrow}} C^{+} - O^{-}$ $B \qquad \stackrel{R}{\underset{H}{\longrightarrow}} C = O \qquad \xrightarrow{R} \stackrel{C}{\underset{H}{\longrightarrow}} O^{-}$ $B \qquad \stackrel{R}{\underset{(:C=N:)}{\longrightarrow}} O^{-}$ $C \qquad \stackrel{R}{\underset{H}{\longrightarrow}} C = O \qquad \xrightarrow{R} \stackrel{C}{\underset{H}{\longrightarrow}} O^{-}$	nism for this
	$\mathbf{D} \qquad \overset{R}{\underset{H}{\overset{\frown}}} \mathbf{C} \stackrel{\frown}{=} \mathbf{O}^{\checkmark} H \stackrel{\frown}{\overset{\frown}} \mathbf{C} \stackrel{\bullet}{=} N \implies \overset{R}{\underset{H}{\overset{\frown}}} \mathbf{C}_{+}^{\bullet} \stackrel{\bullet}{\overset{\bullet}} CN$	
	Correct Answer	Mark
	$B \qquad \begin{array}{c} R \\ H \\ (:C \equiv N:) \end{array} \xrightarrow{R} C \\ H \\ (:C \equiv N:) \end{array} \xrightarrow{R} C \\ H \\ CN \\ CN \\ CN \\ CN \\ CN \\ CN \\ C$	1

Question	Question
Question Number	Question
15 (a)	Which one of the following is a possible formula of the repeat unit of a polymer formed from ethane-1,2-diol and benzene-1,4-dicarboxylic acid. $ \begin{array}{c} O\\ C\\ -O\\ -CH_2-CH_2-O\\ -C\\ -C\\ -C\\ -C\\ -C\\ -C\\ -C\\ -C\\ -C\\ -C$
	$B \qquad \bigcirc H \\ C \\ C \\ C \\ C \\ O \\ C \\ O \\ O \\ O \\ O$
	$\begin{bmatrix} C & -O-CH_2-CH_2-O-C & \\ &$
	$D - O - CH_2 - CH_2 - O - O - CH_2 - O - O - CH_2 - O - O - O - O - O - O - O - O - O - $
	Correct Answer Mark
	$\begin{bmatrix} C & -O-CH_2-CH_2-O-C & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
	· · · ·

Question Number	Question	
15 (b)	What type of reaction is this? A dddition B condensation C dehydration D neutralisation	
	Correct Answer	Mark
	В	1

Section **B**

Question Number	Question		
16 (a)	Give the name of this ester.		
	Acceptable Answers	Reject	Mark
	methyl butanoate Accept Methyl butaneoate	'an' missing	1

Question Number	Question		
16 (b)	Why does the ester have a comparatively low boilin three substances in the equation?	g point compared	to the other
	Acceptable Answers	Reject	Mark
	the other three substances can form intermolecular hydrogen bonds with themselves but the ester cannot.	Discussion of London Forces	1

Question Number	Question	
16 (c)	What is the name given to this type of reaction?	
	Correct Answer	Mark
	Hydrolysis	1

Question Number	Question		
16. (d) QWC (i-iii)	Suggest the reasons why manufacturers choose to use the chemically manufactured pineapple flavouring rather than the natural product and why consumers might prefer to choose the natural product.		
	Acceptable Answers	Reject	Mark
	Must cover advantages and disadvantages. Must not be contradictory Advantages to manufacturers: (any two) • not dependent on weather, seasons etc • consistent taste /concentration/more consistent • quality • or alternative ideas Disadvantages to consumers : (any two) • some people put off by 'non-natural' food • may not taste the same as natural product which may • contain other impurities • unable to describe the product as organic or alternative ideas	Cost with no justification	4

Question Number	Question				
16 (e)	Give the expression for the e calculate its value. Explain w			or this equilibri	um and
	Acceptable Answers			Reject	Mark
	$K_{c} = \frac{[C_{3}H_{7}COOH(l)][CH_{3}OH(l)]}{[C_{3}H_{7}COOCH_{3}(l)][H_{2}O(l)]}$ Accept eq subscripts			Absence of square brackets	5
		Moles at equilib- rium	Concent- ration / mol dm ⁻³		
	butanoic = 4.4/88 = acid	0.05	1.67		
	methanol ester (methyl butanoate)	0.05 0.05	1.67 1.67		
	water	0.95	31.7		
	all four equilibrium moles = 0 Conc at equilibrium = equilibrium = equilibrium = equilibrium = equilibrium = equilibrium = $K_c = \frac{1.67 \times 1.67}{1.67 \times 31.7}$ (1) = 1.67 x 31.7 ignore significant figures unlet figures unlet figures and the figures of control of the fraction have units of control of the figures of moles equation (1)	orium moles 0.053 (1) ess value giv th the top a ncentration	en to 1 s.f. nd bottom of squared.		

Question Number	Question		
17 (a)	State the effect on the value of the equilibrium temperature.	constant of a	n increase in
	Acceptable Answers	Reject	Mark
	Value of equilibrium constant increases (1)		1

Question Number	Question		
17. (b) QWC (i) & (iii)	Use your answer to (i) to explain the effect of the equilibrium.	is change on th	e position of
	Acceptable Answers	Reject	Mark
	If the equilibrium constant increases then more products will be formed (1) And the position of equilibrium will move to the right (1)		2

Question Number	Question		
18 (a)	Rewrite the equation omitting spectator ions.		
	Acceptable Answers	Reject	Mark
	$Mg(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$ Accept state symbols omitted		1

Question Number	Question		
18 (b) (i)	ΔS _{system}		
	Acceptable Answers	Reject	Mark
	Positive because a gas is given off (1) which is more disordered and so has more entropy (1)		2

Question	Question		
Number			
18 (b) (ii)	$\Delta S_{surroundings}$		
	Acceptable Answers	Reject	Mark
	Positive because the reaction is exothermic (1)		2
	and = - $\Delta H/T$ (1)		

Question Number	Question		
18 (b) (iii)	ΔS_{total}		
	Acceptable Answers	Reject	Mark
	Positive because the reaction occurs / total entropy change is the sum of the two positive values above.		1

Question Number	Question		
18 (c) (i)	Suggest the reason for cleaning the magnesium ribbon with sand paper.		
	Acceptable Answers	Reject	Mark
	Surface coated with magnesium oxide (which would react to form water rather than hydrogen).		1

Question Number	Question		
18 (c) (ii) QWC (i-iii)	Calculate the number of moles of hydrochloric acid used up when all the magnesium reacts in one experiment and hence comment on whether the change in concentration during the reaction will have a significant effect on the validity of the assumption that the initial rate is proportional to 1/time. How would you overcome this potential error? [Take the relative atomic mass of magnesium as 24 in this and subsequent calculations]		
	Acceptable Answers	Reject	Mark
	Initial number of moles of HCl = 20 x 1 /1000 = 0.02 Number of moles of Mg = 0.1 / 24 = 0.00417 (1) number of moles of HCl which reacts is 0.00834 (1) Therefore number of moles of HCl left = 0.01166 (1) Ignore sig figs so the concentration nearly halves which would significantly reduce the rate and so make the assumption that the initial rate is proportional to 1/time invalid / inaccurate. (1) Increase the volume of acid to (at least) 50 cm ³ (1) Or measure the time to produce less than the full amount of gas Or use a smaller piece of magnesium. (1)		5

Question Number	Question		
18 (c) (iii)	Use the value of ΔH and other information given in the question to calculate the temperature change in an experiment assuming no energy is lost to the surroundings. Hence comment on whether this change in temperature will have a significant effect. How would you overcome this potential error? [$\Delta H = -467$ kJ mol ⁻¹ . Assume that the specific heat capacity of the solution is 4.18 J K ⁻¹ g ⁻¹]		
	Acceptable Answers	Reject	Mark
	Energy given out = 467 000 x 0.1/24 J = 1 946 J 20 x 4.18 x ΔT = 1 946 (1) ΔT = 23.3 ^(o) (1) Accept units of degrees celsius or kelvin		4
	This temperature change would significantly increase the rate of the reaction (1) Carry out the reaction in a water bath of constant temperature/use a larger volume of more dilute acid (1)		

Question Number	Question		
18 (c) (iv)	The most difficult thing to measure accurately is the time it takes for the magnesium to disappear and the time measured can be up to 2 seconds out. Assuming this error, calculate the shortest time at 56 °C AND the longest time at °C for this reaction.Complete the table for these times. Plot the two points on the grid below and jo 		
	Acceptable Answers	Reject	Mark
	At 329 time 4s $1/time = 0.25 \text{ s}^{-1} \ln(\text{rate}) = -1.39$ (1) At 283 time 124s $1/time = 0.00806\text{s}^{-1} \ln(\text{rate}) = -4.82$ (1) [graph to be drawn] Plot line with new gradient = - 3.43 / 0.00049 = - 7 000 (1) Accept -6800 to -7200 Activation energy = + 7 000 x 8.31 = + 58.2 kJ mol ⁻¹ (1)		4

Question Number	Question		
18 (c) (v)	If the reaction mixture is not stirred, the magnesium tends to float on the surface of the acid. Suggest how this would affect the measurements of the rate of the reaction.		
	Acceptable Answers	Reject	Mark
QWC	Rate of reaction reduced because less surface area in contact with the acid. (1)		1

Question Number	Question		
18 (c) (vi)	Suggest TWO other improvements the student could do to this experiment to improve the accuracy or validity of the results.		
	Acceptable Answers	Reject	Mark
	Any two •Repeat the experiment at each of the temperatures •obtain an initial rate eg by measuring the volume of gas given off before the reaction is complete. •Other sensible suggestions.		2

Question Number	Question		
18 (c) (vii)	If ethanoic acid of the same concentration and at t instead of hydrochloric acid, explain how the rate wou		ature is used
	Acceptable Answers	Reject	Mark
	The rate should be lower, since ethanoic acid is a weaker acid (compared to hydrochloric acid) and so there will be a lower concentration of hydrogen ions present.		1

Question Number	Question			
19 QWC	One step in the production of nitric acid is the oxidation of ammonia.			
(i-iii)	$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$			
	This is carried out at 900 $^\circ C$ over a platinum-rhodium catalyst and is an example of heterogeneous catalysis.			
	Explain in terms of collision frequency and collision energy how the rate would change if the temperature were increased, and which of these causes the greater effect.			
	What is the difference between a heterogeneous and a homogeneous catalyst? Suggest ONE advantage of using a heterogeneous catalyst in processes such as this.			
	Acceptable Answers	Reject	Mark	
	 Acceptable Answers Answer must be given in a logical order, addressing all the points using precise terminology Collision frequency increases as particles moving more quickly (1) More collisions have sufficient energy to overcome activation energy / more molecules on collision have energy ≥ activation energy (1) A greater proportion of collisions result in reaction (1) Collision energy has greater effect (1) Homogeneous all in same phase and heterogeneous in different phases / gas and solid (1) No need to separate products from catalyst (1) 	More collisions More successful collisions	6	

Question Number	Question		
20 (a) (i)	1 mole of P reacts with 1 mole of Br_2 molecules formula $C_7H_{12}OBr_2$.	to form a compo	ound with the
	Acceptable Answers	Reject	Mark
	contains one carbon-carbon double bond		1
	Accept alkene		

Question Number	Question		
20 (a) (ii)	When lithium tetrahydridoaluminate is reacted formula $C_7H_{14}O$ is formed.	with P a compou	und with the
	Acceptable Answers	Reject	Mark
	is a carbonyl compound / C=O group reduced (to CH(OH)) Accept aldehyde or ketone		1

Question Number	Question		
20 (a) (iii)	P forms an orange precipitate with 2,4-dinitrophenylhydrazine.		
	Acceptable Answers	Reject	Mark
	is a carbonyl compound Accept aldehyde or ketone		1

Question Number	Question		
20 (a) (iv)	When P is heated with Fehling's or Benedict's solution, the solution remains blue.		
	Acceptable Answers	Reject	Mark
	is a ketone / P is not an aldehyde	aldehyde	1

Question Number	Question		
20 (a) (v)	P is a Z-isomer.		
	Acceptable Answers	Reject	Mark
	has two groups on the same side of a C=C Accept cis isomer		1

Question Number	Question		
20 (b) (i) QWC (ii) & (iii)	The infrared spectrum of P has the following 1600 cm ⁻¹ . 3060 cm ⁻¹ 2920 cm ⁻¹ 1690 cm ⁻¹ 1660 cm ⁻¹	absorptions at waven	umbers above
	Acceptable Answers	Reject	Mark
	3060 alkene (C-H stretching)2920 alkane (C-H stretching)1690 ketones (C=O stretching)1660 alkene (C=C stretching)4 Correct \rightarrow 3 marks3 Correct \rightarrow 2 marks2 Correct \rightarrow 1 mark		3

Question Number	Question		
20 (b) (ii)	The nmr spectrum does NOT have a peak corresponding to a chemical shift, $\delta,$ of between 9 and 10.		
	Acceptable Answers	Reject	Mark
	not an aldehyde		1

Question	Question		
Number			
20 (b) (iii)	The mass spectrum showed the presence of peaks at mass/charge ratios of 15 and		
QWC	29, but no peak at 43.		
(ii) & (iii)			
	Acceptable Answers	Reject	Mark
	15 CH ₃ group (1)		3
	29 C_2H_5 group (1)		
	43 no C_3H_7 group (1)		

Question Number	Question		
20 (c)	Given that P has a straight chain of carbon atoms in its formula, use the information you have deduced above to suggest a displayed formula for the pheromone P.		
	Acceptable Answers	Reject	Mark
	$\begin{array}{c} C_2H_5 - C = C - CH_2COCH_3 \\ H H \end{array}$		2
	ketone and Z (1)		
	rest of molecule (1)		
	Accept Fully displayed		

Question Number	Question		
20 (d)	How could you use a purified sample of the orange precipitate in (a)(iii) to confirm the formula of P?		
	Acceptable Answers	Reject	Mark
	Measure its melting temperature (1) And compare with data book values (1)		2

Unit 5: General Principles of Chemistry II

Section A

Question Number	Question	
1	In a standard hydrogen electrode A the hydrogen gas is at one atmosphere pressure B a solution of 1 mol dm ⁻³ sulfuric acid is used C A temperature of 273 K is maintained D a piece of shiny platinum foil is used	
	Correct Answer	Mark
	A	1

Question Number	Question	
2	For a redox reaction to be thermodynamically feasible, E _{cell} must be A positive B negative C greater than + 0.3 V D more negative than - 0.3V	
	Correct Answer	Mark
	A	1

Question Number	Question	
3 The standard electrode potential for the electrode system based on the below is +1.51 V.		
	MnO_4^- (aq) + $8H^+$ (aq) + $5e^- \Rightarrow Mn^{2+}$ (aq) + $4H_2O(l)$ Which of the following statements about the electrode system is correctly	rect?
	 A the electrode potential at pH 5 is +1.51 V. B Mn²⁺(aq) is acting as an oxidising agent. C changing the concentration of Mn²⁺(aq) would cause a change in th potential. D the electrode used in this half cell is made of manganese. 	e electrode
	Correct Answer	Mark
	C	1

Question Number	Question	
4	Which of the following is always proportional to E_{cell} for a chemical real $A = \Delta H_r$ B = ΔS_{system} C = $\Delta S_{surroundings}$ D = ΔS_{total}	eaction?
	Correct Answer	Mark
	D	1

Question Number	Question			
5 (a)	What are	What are the oxidation numbers of carbon in methanol and methanoic acid?		
		Methanol	Methanoic acid	
	A	-1	+1	
	В	-2	+2	
	C	+1	-1	
	D	+2	-2	
	Correct A	nswer		Mark
	В			1

Question Number	Question	
5 (b)	How many moles of methanol react with one mole of dichromate (VI) A 1 B ${}^{3}/_{4}$ C $1^{1}/_{2}$ D 3	ion $\operatorname{Cr}_2 \operatorname{O}_7^{2^-}$?
	Correct Answer	Mark
	C 11/2	1

Question Number	Question	
6	Which of the following will NOT act as a ligand in the formation of control $A\ C_6H_5NH_2$ $B\ CH_3NH_2$ $C\ NH_4^+$ $D\ NH_3$	omplexes?
	Correct Answer	Mark
	C	1

Question Number	Question	
7	Which of the following ground state electron configurations corre element most likely to form an oxide with catalytic properties? A 1s ² 2s ² B 1s ² 2s ² 2p ⁶ 3s ² C 1s ² 2s ² 2p ⁶ 3s ² 3p ² D 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	sponds to an
	Correct Answer	Mark
	D	1

Question Number	Question	
8	 X, Y, and Z are three different compounds from the list below. X together to form an ester. X and Z also react to give the same ester but less readily. Compound Y could be A propanoyl chloride B propanoic acid C propan-1-ol D propanal 	
	Correct Answer	Mark
	A	1

Question Number	Question	
9	Which of the following isomers of C ₄ H ₁₀ O has a chiral centre? A Butan-1-ol B Butan-2-ol C 2-methylpropan-1-ol D 2-methylpropan-2-ol	
	Correct Answer	Mark
	В	1

Question Number	Question	
10	 When the colourless liquid chlorobenzene is shaken with bromin chlorobenzene becomes a yellow orange colour. What is the interpret A an addition compound of chlorobenzene and bromine has formed. B the chlorine atom has been replaced by a bromine atom. C a hydrogen atom has been replaced by a bromine atom. D the bromine is more soluble in chlorobenzene than in water. 	
	Correct Answer	Mark
	D	1

Question Number	Question	
11	What class of organic compound has a characteristic smell and gives water with a pH of about 10? A Arene B Amine C Aldehyde D Carboxylic acid	s a solution in
	Correct Answer	Mark
	В	1

Question Number	Question	
12	Which chemical term best describes what happens when butylamine solution of a cobalt(II) salt? A precipitation B redox C proton transfer D complex formation	is added to a
	Correct Answer	Mark
	D	1

Question Number	Question	
13	The substance of formula (OCH ₂ CH ₂ OOCC ₆ H ₄ COOCH ₂ CH ₂ OOCC ₆ H ₄ CO) _n A polyester B natural oil or fat C detergent D protein	is a
	Correct Answer	Mark
	A	1

Question Number	Question	
14	The optical isomers of alanine, CH ₃ CH(COOH)NH ₂ A have different melting points B rotate the plane of plane polarised light in opposite directions C react at different rates with ethanoyl chloride, CH ₃ COCl D both occur naturally in protein molecules	
	Correct Answer	Mark
	В	1

Question Number	Question	
15	The rate equation for the reaction between aqueous sodium hy chloro-2-methylpropane is Rate = k[2-chloro-2-methylpropane] The first step in the mechanism of this substitution reaction is A nucleophilic attack by OH ⁻ ions on the carbon atom in the C-Cl bo B electrophilic attack by OH ⁻ ions on the carbon atom in the C-Cl bo C the breaking of the C-Cl bond to form a carbocation D the simultaneous making of a O-C bond as the C-Cl bond breaks	nd
	Correct Answer	Mark
	C	1

Question Number	Question	
16	 When hydrogen cyanide, HCN, is added to ethanal, CH₃CHO, the resulting solution has no effect on the plane of polarisation of plane polarised light. This is because A ethanal is not chiral B the product is not chiral C the intermediate is planar D the product is a racemic mixture 	
	Correct Answer	Mark
	D	1

Question Number	Question	
17 (a)	Benzene, C ₆ H ₆ and cyclohexane, C ₆ H ₁₂ A B C D	
	Correct Answer	Mark
	C	1

Question Number	Question	
17 (b)	Hydrogen cyanide, HCN, and carbon dioxide, CO ₂ A B C D	
	Correct Answer	Mark
	D	1

Question Number	Question	
18 (a)	be a solid at room temperature A B C D	
	Correct Answer	Mark
	B Glycine, NH ₂ CH ₂ COOH	1

Question Number	Question	
18 (b)	give a salt by reaction with sodium hydroxide A B C D	
	Correct Answer	Mark
	B Glycine, NH ₂ CH ₂ COOH	1

Question Number	Question	
18 (c)	give a sulfonic acid by reaction with fuming sulfuric acid A B C D	
	Correct Answer	Mark
	A Benzene, C_6H_6	1

Question Number	Question	
18 (d)	form a precipitate when reacted with 2,4-dinitrophenylhydrazine A B C D	
	Correct Answer	Mark
	D Propanone, CH ₃ COCH ₃	1

Question Number	Question	
19 (a)	adjacent polymer chains in (-CH ₂ - CH ₂ -) _n A Dative covalent B London forces C Ion-dipole D Ionic	
	Correct Answer	Mark
	B London forces	1

Question Number	Question	
19 (b)	copper ions and ammonia in Cu(NH ₃)4 ²⁺ A dative covalent B London forces C ion-dipole D ionic	
	Correct Answer	Mark
	A Dative covalent	1

Section **B**

Question Number	Question	
20 (a)	Why is the acid necessary ?	
	Correct Answer	Mark
	MnO_4^- needs acid to be reduced to Mn^{2+}	1

Question Number	Question	
20 (b)	How many moles of Fe^{2+} react with one mole of MnO_4^- ?	
	Correct Answer	Mark
	5	1

Question Number	Question		
20 (c)(i)	How many moles of Fe2+ are in one tablet is:		
	Acceptable Answers	Reject	Mark
	1.79 ×10 ⁻⁴		1

Question Number	Question		
20 (c)(ii)	Use your answer to (i) to calculate the volume of 0.010 mol dm-3 potassium manganate(VII) solution that would be needed to react with one tablet.		
	Acceptable Answers	Reject	Mark
	1.79×10^{-4} mols of Fe ²⁺ in one tablet		1
	: mols of MnO ₄ ⁻ = $\frac{1}{5}$ x1.79x10 ⁻⁴ (1)		
	0.01 mol in 1000 cm ³		
	$\therefore \ \frac{1}{5} \times 1.79 \times 10^{-4} \ \text{in} \ \frac{1000}{0.01} \times \frac{1.79 \times 10^{-4}}{5}$		
	= 3.58		
	$= 3.6 \text{ cm}^3$ (1)		

Question Number	Question		
20 (c)(iii)	Is this a suitable volume to verify the integrity of t alter the experiment to obtain a more suitable vol		would you
	Acceptable Answers	Reject	Mark
	No, titration value too low Either: use more tablets Or: use more dilute solution of KMnO4		1

Question Number	Question		
20 (d) QWC (i) & (iii)	The recommended consumption of Fe^{3+} per day is 14 mg. The tolerable upper level of consumption of Fe^{2+} per day is 45 mg. The "10 mg iron tablets" produced by a pharmaceutical company contain between 9 and 11 mg of Fe^{2+} . Discuss whether or not this range of iron content is acceptable.		
	Acceptable answers	Reject	Mark
	 (It is acceptable because) well below the maximum safe limit (1) Not significantly different from recommended daily dose OR Variation in body mass means that different doses are acceptable 		2
	OR only if max 1 tablet per day is written on the bottle (1)		

Question Number	Question	
21 (a) (i)	Write the equation for the reaction between cyclohexene, $igodot$, and brook	omine.
	Correct Answer	Mark
	$+ Br_2 \longrightarrow Br_Br$	1

Question Number	Question	
21 (a) (ii)	Draw out the mechanism for this reaction.	
	Correct Answer	Mark
	$ \begin{array}{c} $	3
	Br-Br (1)	
	Br Br ⁻ +	
	Br (1) Br	

Question Number	Question		
21 (b) (i)	Write the equation for the reaction between benzene presence of a catalyst of anhydrous iron(III), FeBr3.	, $\widehat{\bigcirc}$, and bromin	e in the
	Acceptable Answers	Reject	Mark
	$ + Br_2 \rightarrow O + HBr $		1

Question Number	Question		
21 (b) (ii)	Draw out the mechanism for this reaction. Include an of the species that attacks the benzene ring.	equation for the	formation
	Acceptable Answers	Reject	Mark
	$Br_{2} + FeBr_{3} \rightarrow Br^{+} + FeBr_{4}^{-} / \delta^{+} \delta^{-}$ $Br - FeBr_{4} \qquad (1)$ Step 1		4
	<u>Step 1</u> Arrow from ring towards Br^+ (1) Intermediate (1) <u>Step 2</u> Arrow from bond, ring to H, to inside ring (and from FeBr ₄ ⁻ to H ⁺) and formation of products (1)		

Question Number	Question			
21 (b) (iii)	Write an equation to show how the catalyst is regene	ite an equation to show how the catalyst is regenerated		
	Acceptable Answers	Reject	Mark	
	$\operatorname{FeBr}_4^{\cdot}$ + $\operatorname{H}^{+} \rightarrow \operatorname{FeBr}_3$ + HBr		1	

Question Number	Question		
21 (c) (i) QWC (i) & (iii)	Comment critically on the differences and similarities of the first steps involving the organic compounds in both reactions.		
	Acceptable Answers	Reject	Mark
	Both attacked by an electrophile (1) Due to stability of delocalised ring (1) benzene attacked by (stronger electrophilic) Br^+ rather than $Br^{\delta+}$ in Br_2 (1)		3

Question Number	Question		
21 (c) (ii) QWC (i) & (iii)	Comment critically on why the two intermediates for react differently?	rmed in these firs	t steps then
	Acceptable Answers	Reject	Mark
	CyclohexeneAddition of Br does not involve bond breaking/results in more exothermic reaction than loss of H*(1)BenzeneNo Br available in benzene reaction (1) Stability ofring regained by loss of H* (1)		3

Question Number	Question		
21 (d)	State the number of peaks in the proton nmr spe reaction between cyclohexene and bromine.	ctrum of the pro	oduct of the
	Acceptable Answers	Reject	Mark
	Three / 3		1

Question Number	Question		
22 (a) (i)	Give the electron configuration of: Fe [Ar] Fe ²⁺ [Ar]		
	Acceptable Answers	Reject	Mark
	Fe[Ar] 3d ⁶ 4s ² in either order, allowing superscripts to be subscripts Fe[Ar] 3d ⁶ or 3d ⁶ 4s ⁰ in either order, allowing superscripts to be subscripts Letter d must be lower case	Any other letters	1

Question Number	Question		
22 (a) (ii)	Draw the structure of the hexaaquairon(II) ion, [F shape.	e(H ₂ O) ₆] ²⁺ clearly	showing its
	Acceptable Answers	Reject	Mark
	$H_2 O - OH_2 OH_2 OH_2 OH_2 OH_2 OH_2 OH_2 OH_2$		1
	$\begin{array}{cccc} OH_2 & OH_2 \\ OR & H_2 O & Fe^{2+} & OH_2 \\ H_2 O & OH_2 \end{array}$		
	OR $H_2O_{H_2}O_{H_2}$ $H_2O_{H_2}O_{H_2}$ $H_2O_{H_2}O_{H_2}O_{H_2}$ Instead of dotted line ALLOW bond to H of H_2O (except on left side if OH_2 is given) IGNORE charge unless incorrect		

Question Number	Question		
22 (a) (iii)	Give the equation for the complete reaction of so solution of hexaaquairon(II) ions.	odium hydroxide	ions with a
	Acceptable Answers	Reject	Mark
	$[Fe(H_2O)_6]^{2+}$ + 2OH ⁻ \rightarrow $[Fe(OH)_2(H_2O)_4]$ +		1
	2H ₂ O		
	OR		
	$\left[Fe(H_2O)_6\right]^{2+} + 2OH^- \rightarrow Fe(OH)_2 + 6H_2O$		

Question Number	Question		
22 (a) (iv)	State what you would SEE if the product mixture in (iii) is left to stand in air.		
	Acceptable Answers	Reject	Mark
	Green precipitate/solid → Foxy-red/red- brown/brown/orange Both colours and precipitate/solid needed	Just "Darkens"	1

Question Number	Question		
22 (b) (i) QWC (i) & (iii)	Define the term STANDARD ELECTRODE POTENT electrode.	IAL with refere	nce to this
	Acceptable Answers	Reject	Mark
	Emf of cell/ potential difference of cell containing Fe (1) dipping into a 1 mol dm ⁻³ Fe ²⁺ solution (1) And standard hydrogen electrode/half cell OR hydrogen electrode and 1 mol dm ⁻³ H ⁺ and 1 atm H ₂ OR description of standard hydrogen electrode (1) IGNORE temperature	'SHE'	3

Question Number	Question		
22 (b) (ii) QWC (i) & (iii)	Explain why the value of E^{\oplus} suggests that the iron will react with an aqueous solution of an acid to give Fe ²⁺ ions and hydrogen gas.		
	Acceptable Answers	Reject	Mark
	Emf of hydrogen electrode is zero - stated or implied e.g. if calclulate E_{cell} = +0.44 V (1) Potential for the reaction is positive so reaction is		2
	feasible OR Fe half cell has more negative electrode potential OR H ^{$+$} and (1/2)H ₂ has a more positive electrode		
	potential (1)		

Question Number	Question		
22 (b) (iii)	State why $E^{-\Theta}$ values cannot predict that a reaction possible.	on will occur, on	ly that it is
	Acceptable Answers	Reject	Mark
	High <i>E</i> _a so slow reaction / reactants are kinetically stable <i>IGNORE any mention of non-standard conditions</i>		1

Question Number	Question		
23 (a) QWC (i) & (iii)	Explain why poly(ethenol) is soluble in water.		
	Acceptable Answers	Reject	Mark
	Many -OH groups (1) which can hydrogen bond to water (1)		2

Question Number	Question		
23 (b) (i)	Draw the repeat unit of poly(ethenol)		
	Acceptable Answers	Reject	Mark
			2

Question Number	Question			
23 (b) (ii)	Write the formula of the monomer which polymerises to form poly(vinyl acetate), PVA.(poly(ethenylethanoate))			
	Acceptable Answers	Reject	Mark	
	$ \begin{array}{c} H & H \\ C = C \\ H & O \\ C \\ C$		3	

Question Number	Question				
23 (c) (i)	1,2-dibromocyclohexane reacts with ammonia to produce compound A, $C_6H_{14}N_2$. Give the structural formula of A.				
	Acceptable Answers	Reject	Mark		
	NH ₂ NH ₂ or displayed	H ₂ NC ₄ H ₆ NH ₂	1		

Question Number	Question		
23 (c)(ii)	Compound A reacts with hexanedioyl structure of the repeating unit of this		aw the
	Acceptable Answers	Reject	Mark
	H -N H O O $N-C$ $(CH_2)_4$ C link(1) rest of formula (1)	—OC(CH ₂) ₄ CONHC ₆ H ₄ NH— Amide link as CONH	2

Question Number	Question			
23 (c) (iii) QWC (i) & (iii)	Suggest why this polymer cannot be made into strong fibres.			
	Acceptable Answers	Reject	Mark	
	Polymers do not form in an "unkinked" chain OR chain has bends at ring OR chain not linear OR strong fibres require straight chain (1)		2	
	This polymer has fewer hydrogen bonds between chains (1)			

Question Number	Question		
23 (d)	Classify the two polymerisation reactions.		
	Acceptable Answers	Reject	Mark
	Ethenol: Addition Fibre: Condensation		1

Section C

Question Number	Question		
24. (a) (i)	Define what is meant by a TRANSITION ELEMENT.		
	Acceptable Answers	Reject	Mark
	An element which forms ions in at least one of its compounds which have a partly filled shell of d electrons (1)		1

Question Number	Question		
24 (a) (ii) QWC (i) & (iii)	Explain the processes which lead to hydrated coloured.	transition metal	ions being
	Acceptable Answers	Reject	Mark
	The water ligands split the d orbitals into one set at lower and one at higher energy (1)	Any mention of light emitted scores zero	3
	Light is absorbed (1) and the electron promoted to a higher level (1)		
	The correct sequence must be given to score either of the last two marks		

Question Number	Question		
24 (b) (i)	Give the formula of the red copper oxide which cau	ses the red colour i	in glass.
	Acceptable Answers	Reject	Mark
	Red Cu_2O (1)		1

Question Number	Question				
24 (b) (ii)		The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects.			
	Acceptable Answers	Reject	Mark		
	Benedicts/Fehlings (solution) (1) Accept recognisable phonetic spelling eg Felings, Benedicks, Benedikts	Failings	2		
	Aldehyde (1)				

Question Number	Question		
24 (c) QWC (i) & (iii)	Why would the addition of iron(II) oxide, FeO, or replace aluminium ions in alumina?	osmium(III) oxide,	Os_2O_3 , not
	Acceptable Answers	Reject	Mark
	FeO is 2+ not 3+ (1) Os ³⁺ has too large a radius (1)		2

Question Number	Question					
24(d)(i) QWC (i-iii)	Starting with a chromium(VI) cc You should inclu	mpound, a	ound and a o	complex io		
	Acceptable Ansv	vers			Reject	Mark
		reagent	colour change	equation		7
	(III)→(VI)	(1)	Green→orange- yellow (1)	(1)		
	()→()	(1)	Green→blue (1)	Zn+2Cr ³⁺ – Zu ²⁺ +2Cr ²⁺ (1)	→	
	(III)→complex	(1)	(1)	(1)		
	<u>Reagent</u>					
	$E^{-\Theta}$ for reagent must be more positive than 1.6 V					
			re negative than -0. that reacts with wat			
	<u>Colour change</u> Do not penalise lack of green twice.					
	<u>Complex format</u> e.g. formation o	of [Cr([Cr([Cr([Cr([Cr ₂	$[NH_{3})_{6}]^{3+}$ $OH)_{6}]^{3-}$ $en)_{3}]^{3+}$ $edta)]^{-}$ $(Cu_{3}CO_{2})_{4} (H_{2}O)_{2}]$ $CH_{3}CO_{2})_{4}]$			
	Reagent and col	our change	must fit the comple	х		
	Score up to 7 ma	arks (from tl	he 9 marking points))		

Question Number	Question			
24 (d) (ii) QWC (i-iii)	Discuss the chemistry of the use of chromium salts in breathalysers. Explain why they are no longer used and describe the chemistry of one modern type of breathalyser.			
	Acceptable Answers	Reject	Mark	
	 Breathalyser Original contained dichromate/chromate ions which were reduced to green (chromium(III) by ethanol in breath (1) Extent going green judgemental / chromium(VI) compounds carcinogenic (1) 		4	
	Then			
	 Either New one consists of a fuel cell (1) where ethanol oxidised by air (using a platinum catalyst) / Quantity of electricity proportional to amount of ethanol in breath (1) Or New one consists of an IR spectrometer (1) which measures line in fingerprint region / Amount of IR absorbed depends on amount of ethanol in breath (1) 			

Edexcel, a Pearson company, is the UK's largest awarding body, offering academic and vocational qualifications and testing to more than 25,000 schools, colleges, employers and other places of learning in the UK and in over 100 countries worldwide. Qualifications include GCSE, AS and A Level, NVQ and our BTEC suite of vocational qualifications from entry level to BTEC Higher National Diplomas, recognised by employers and higher education institutions worldwide.

We deliver 9.4 million exam scripts each year, with more than 90% of exam papers marked onscreen annually. As part of Pearson, Edexcel continues to invest in cutting-edge technology that has revolutionised the examinations and assessment system. This includes the ability to provide detailed performance data to teachers and students which helps to raise attainment.

We will inform centres of any changes to this issue. The latest issue can be found on the Edexcel website: www.edexcel.org.uk.

Acknowledgements

This document has been produced by Edexcel on the basis of consultation with teachers, examiners, consultants and other interested parties. Edexcel acknowledges its indebtedness to all those who contributed their time and expertise to its development.

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Edexcel will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

References to third-party material made in this document are made in good faith. Edexcel does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

Authorised by Roger Beard

Publications code UA018861

All the material in this publication is copyright © Edexcel Limited 2007

Qualifications and Curriculum Authority

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone: 01623 467467 Fax: 01623 450481 Email: publications@linneydirect.com

Publications code UA018861 September 2007

For more information on Edexcel and BTEC qualifications please contact Customer Services on 0870 240 9800 or enquiries.edexcel.org.uk or visit our website: www.edexcel.org.uk

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH. VAT Reg No 780 0898 07