

Edexcel Advanced Subsidiary GCE in Chemistry (8CH07)
First examination 2009

Edexcel Advanced GCE in Chemistry (9CH07)
First examination 2010

International Alternative to Internal Assessment (Units 3B and 6B)

January 2008

Contents

Α	Introduction	
В	Sample question papers	
	Unit 3B: Chemistry Laboratory Skills I Alternative	
	Unit 6B: Chemistry Laboratory Skills II Alternative	
С	Sample mark schemes	35
	General marking guidance	37
	Unit 3B: Chemistry Laboratory Skills I Alternative	39
	Unit 6B: Chemistry Laboratory Skills II Alternative	47

A Introduction

These sample assessment materials have been prepared to support the specification.

Their aim is to provide the candidates and centres with a general impression and flavour of the actual question papers and mark schemes in advance of the first operational examinations.

B Sample question papers

Unit 3B: Chemistry Laboratory Skills I Alternative	7
Unit 6B: Chemistry Laboratory Skills II Alternative	.19

Centre No.			Paper Reference					Surname	Initial(s)		
Candidate No.			6	C	Н	0	7	/	1	Signature	

Paper Reference(s)

6CH07/1 **Edexcel GCE**

Chemistry

Advanced Subsidiary

Unit 3B: Chemistry Laboratory Skills I Alternative

Sample Assessment Material

International Alternative to Internal Assessment

Time: 1 hour 15 minutes

Materials	required	for	examination
Nil			

Items included with question papers

Candidates may use a calculator

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Do not use pencil. Use blue or black ink.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 4 questions in this question paper. The total mark for this paper is 50. There are 12 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited

W850/XXXX/57570 2/3/3/2/

Examiner's use only Team Leader's use only

Question

1

2

3

4

Leave

Turn over

Total

Answer ALL the questions. Write your answers in the spaces provided.

1. (a) Compound A is a white solid that contains one cation and one anion. Complete the table below.

	Test	Observation	Inference
(i)	Flame test	flame	The cation in A is potassium.
(ii)	To a solution of A , add dilute nitric acid followed by silver nitrate solution.	White precipitate	The anion in A is
(iii)	To solid A in a test tube, add concentrated sulfuric acid. Hold a piece of cotton wool soaked in ammonia solution above the test tube.	A vigorous reaction occurs with forming above the test tube.	The gas formed in the reaction between A and concentrated sulfuric acid is

(4)

(iv)	Write an equation to show the reaction occurring between ammonia and the gas formed in the reaction between A and concentrated sulfuric acid. State symbols are not required.
	(1)
(v)	Describe how you would carry out a flame test in the laboratory.
	(3)

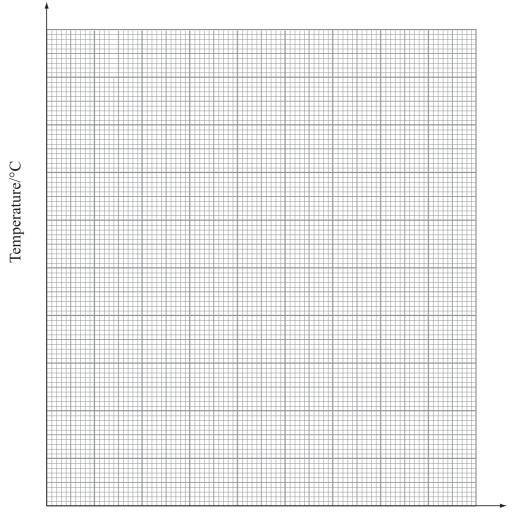
Leave blank (b) Compound B is a white solid that contains one cation and one anion. Complete the table below. Observation Inference **Test** (i) Pale green flame The cation in **A** is Flame test (ii) Heat a sample of B in a test tube, testing any Brown gas evolved. gases evolved with a glowing splint. Splint re-lights. (iii) Add a few drops of White precipitate The white precipitate is dilute sulfuric acid to a solution of **B**. **(4)** (iv) Give the formula of compound **B**. Q1 **(1)** (Total 13 marks)

Leave
blank

2.	(a)	An	organic compound C has the structure CH_2 = CH — CH_2Br .
		Des	scribe a test and its result to show the presence of the C=C group in C.
		Tes	t
		Res	zult(2)
	(b)	Wh	en $\mathbb C$ is warmed with excess aqueous potassium hydroxide, the following reaction urs.
			CH_2 = CH — $CH_2Br + OH^- \rightarrow CH_2$ = CH — $CH_2OH + Br^-$
			test for the presence of the bromide ions formed, dilute nitric acid followed by eous silver nitrate is added to the cooled mixture.
		(i)	Why is dilute nitric acid added?
			(1)
		(ii)	Describe what you would see as the aqueous silver nitrate is added.
			(1)
	(c)	(i)	Describe two observations that you would expect to make when a small piece of sodium is added to some CH ₂ =CH—CH ₂ OH in a crucible.
			Observation 1
			Observation 2
			(2)
		(ii)	Why is it important that the crucible is dry before it is used in this test?
			(1)
			(Total 7 marks)

3. A student followed the procedure below to investigate the enthalpy change for the reaction between zinc and copper(II) sulfate solution.

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$


Procedure

- 1. Weigh about 5 g of zinc powder (an excess).
- 2. Using a measuring cylinder, transfer 50 cm³ of 1.00 mol dm⁻³ copper(II) sulfate into a small beaker.
- 3. Place a thermometer in the solution. Record the temperature of the solution at one minute intervals for the first three minutes.
- 4. At 3.5 minutes add the zinc powder to the copper(II) sulfate solution.
- 5. Record the temperature every minute from 4.0 to 9.0 minutes.

The student's results are shown in the table below.

Time/min	0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
Temperature/°C	20.0	20.0	20.0	20.0	63.0	60.5	59.0	57.0	55.5	53.0

(a) (i) On the grid below plot a graph of temperature (°C) against time (mins).

Time/min (3)

Leave
blank

(ii) Use your graph to find the maximum temperature change, ΔT . Show your working clearly on the graph.
$\Delta T = \dots ^{\circ}C$ (2)
(iii) Suggest one reason why a series of temperature readings is taken rather than just the initial and final temperatures.
(1)

(b) (i) Calculate the energy transferred to the solution. Express your answer in kJ. [Assume that the specific heat capacity of the solution is 4.2 J g $^{-1}$ °C $^{-1}$]

energy transferred in kJ
$$= \frac{\text{mass of solution} \times \text{specific heat capacity} \times \Delta T}{1000}$$

(2)

	(ii) Calculate the number of moles of copper(II) sulfate in $50~\rm{cm^3}$ of $1.00~\rm{mol}~\rm{dm^{-3}}$ solution.
	(1)
	(iii) Calculate the enthalpy change, ΔH , for this reaction. Give your answer in kJ mol ⁻¹ and to two significant figures. Include a sign with your answer.
	$\Delta H = \dots kJ \text{ mol}^{-1}$ (3)
:)	Suggest two improvements to the procedure that may give more accurate results.
	Improvement 1
	Improvement 2
	(2)
	(Total 14 marks)

4. An experiment to prepare a sample of cyclohexene makes use of the reaction in which cyclohexanol is dehydrated when it is warmed with concentrated phosphoric acid.

$$C_6H_{11}OH(1) \rightarrow C_6H_{10}(1) + H_2O(1)$$

cyclohexanol cyclohexene

Procedure

- 1. Assemble a distillation apparatus with a water-cooled condenser and a thermometer in the neck of a round-bottomed distillation flask.
- 2. Measure 0.1 mol of cyclohexanol into the round-bottomed flask.
- 3. Add 4 cm³ of concentrated phosphoric acid to the flask.
- 4. Gently heat the mixture in the flask and collect the liquid that boils off between 70°C and 90°C. This is impure cyclohexene.
- 5. Transfer the liquid to a separating funnel, then add an equal volume of saturated salt solution to it. Shake the funnel gently. Allow the funnel to stand for a few minutes until the layers have separated.
- 6. Run off the cyclohexene layer into a small flask and add some anhydrous calcium chloride to it. Allow the mixture to stand until the cyclohexene becomes clear.
- 7. Decant off the cyclohexene into a clean flask. Re-assemble the distillation apparatus.
- 8. Heat the cyclohexene and collect the liquid that distils off between 81°C and 85°C.

Data

Property	Cyclohexanol	Cyclohexene
Density / g cm ⁻³	0.96	0.81
Molar mass / g mol ⁻¹	100.0	82.0
Boiling temperature / °C	161.0	83.3

(a) Calculate the mass and volume of cyclohexanol to be used in the preparation.

(2)

(b) Suggest the most appropriate piece of apparatus for measuring the volume of cyclohexanol calculated in (a). The volume need only be measured to an accuracy of $\pm 0.5 \text{ cm}^3$.

(c)	Draw a labelled diagram of the apparatus you would use to carry out the instruction described in point 4 of the procedure.	Leave blank
	described in point 4 of the procedure.	
	(4)	
(d)	How would you make up a saturated salt solution?	
(u)	now would you make up a saturated sait solution:	
	(1)	

Leave	
blank	

(e) On the diagram of the separating funnel, label the cyclohexene layer. Explain how you would use the separating funnel to transfer the cyclohexene layer to a small flask. **(2)** (f) Why is anhydrous calcium chloride added to the cyclohexene? (g) Suggest one reason why the instruction in point 8 of the procedure is to collect the liquid that distils off between 81°C and 85°C, rather than just at the boiling temperature of cyclohexene. **(1)** (h) (i) Calculate the maximum yield, in grams, of cylcohexene that may be prepared from 0.1 mol of cyclohexanol.

 (ii) Using the procedure described, a student prepares 4.10 g of cyclohexene. Calculate the percentage yield of cyclohexene in the preparation. 	Leave blank
(iii) Suggest two reasons why this preparation does not produce a 100 % yield. 1	
2	
(2) (Total 16 marks) TOTAL FOR PAPER: 50 MARKS	Q4
END	

	327 3723	fra	Ca	<u> </u>	гь <u> — </u>	pot	(LJ	so ^	S =			
	* Lantha	[223] Fr francium 87	Cs caesium 55	132.9	85.5 Rb rubidium	potassium 19	39.1	Na Na	1 -	(1)	_	
	* Lanthanide series * Actinide series	[226] Ra radium 88		137.3	87.6 Sr strontium	Ca calcium 20	40.1	Mg magnesium 12	9.0 Be beryllium 4	(2)	2	
	38	[227] Ac* actinium 89	La* lathanum 57	138.9	88.9 Yttrium	Sc scandium 21	45.0	(3)				
232 Th thorium	140 Ce cerium	[261] Rf rutherfordium 104	Hf hafnium 72	178.5	91.2 Zr zirconium	Ti titanium 22	47.9	(4)	relat atc atomic			
[231] Pa protactinium 91	141 Pr praseodymium	[262] Db dubnium 105	Ta tantalum 73	180.9	92.9 Nb niobium	vanadium 23	50.9	(5)	relative atomic mass atomic symbol name atomic (proton) number	Key		
238 U uranium 92	144 Nd neodymium	[266] Sg seaborgium 106	W tungsten 74	183.8	95.9 Mo molybdenum	Cr chromium 24	52.0	(6)	mass ibol number			⊣
[237] Np neptunium 93	144 [147] Nd Pm neodymium promethium	[264] Bh bohrium 107	Re rhenium 75	186.2	[98] Tc technetium	Cr Mn chromium manganese 24 25	54.9	(7)				he Pe
[237] [242] [243] Np Pu Am neptunium plutonium americium 93 94 95	sar	[277] Hs hassium 108	Os osmium 76	190.2	101.1 Ru ruthenium	iron 26	55.8	(8)		1.0 H hydrogen		riodi
[243] Am americium 95	eu	[268] Mt meitnerium 109	iridium	192.2	102.9 Rh rhodium	Co cobalt 27	58.9	(9)				c Tab
[247] Cm curium 96	157 Gd gadolinium	[268] [271] [272] Mt Ds Rg meitnerium damstadtium roentgenium 109 110 111	Pt platinum 78	195.1	Pd palladium	nickel 28	58.7	(10)				The Periodic Table of Elements
[245] Bk berkelium 97	te	[272] Rg roentgenium	Au gold 79	197.0	107.9 Ag silver	copper 29	63.5	(11)				Elen
	163 Dy dysprosium		Hg mercury 80	200.6	112.4 Cd cadmium	zinc 30	65.4	(12)				ents
[251] [254] Cf Es californium einsteinium 98	ੜ	ments with	T1 thallium 81	204.4	114.8 In indium	gallium 31	69.7	Al aluminium 13	10.8 B boron 5	(13)	ω	
[253] Fm fermium 100	167 Er erbium	atomic nu but not	Pb lead 82	207.2	118.7 Sn tin	germanium 32	72.6	Si silicon	12.0 C carbon 6	(14)	4	
[256] Md mendelevium 101	169 Tm thulium	tomic numbers 112-116 hav but not fully authenticated	Bi bismuth 83	209.0	121.8 Sb antimony	arsenic 33	74.9	P phosphorus	14.0 N nitrogen 7	(15)	5	
[254] No nobelium 102	173 Yb ytterbium	2-116 have enticated	Po polonium 84	[209]	127.6 Te tellurium	selenium 34	79.0		16.0 O oxygen 8	(16)	6	
[257] Lr lawrencium 103	Ē_ ,	Elements with atomic numbers 112-116 have been reported but not fully authenticated	At astatine 85	[210]	126.9 iodine 53	bromine 35	79.9	Cl chlorine 17	19.0 F fluorine 9	(17)	7	
''		ted .	radon 86	[222]	131.3 Xe xenon	krypton 36	83.8	Ar argon 18	20.2 Ne neon 10	(18) 4.0 He helium 2	0 (8)	

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	C	Н	0	8	/	1	Signature	

Paper Reference(s)

6CH08/1

Edexcel GCE

Chemistry Advanced

Unit 6B: Chemistry Laboratory Skills II Alternative

Sample Assessment Material

International Alternative to Internal Assessment

Time: 1 hour 15 minutes

Materials	required	for	examination
Nil			

Items included with question papers

Candidates may use a calculator

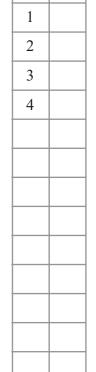
Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Do not use pencil. Use blue or black ink.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 4 questions in this question paper. The total mark for this paper is 50. There are 16 pages in this question paper. Any blank pages are indicated.


Advice to Candidates

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

N33502A
W850/XXXX/57570 2/3/3/2/

Examiner's use only

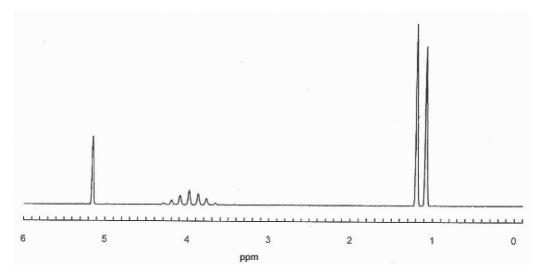
Team Leader's use only

Question

Leave

Turn over

Total


Answer ALL questions.

- 1. S, T and U are different organic liquids, each of which has three carbon atoms and each contains only one functional group.
 - (a) Complete the table below by filling in the **inferences** column. In each case you should indicate what the test and observations tell you about the original compound.

	Test	Observations	Inferences	
(i)	Add a small piece of sodium to 2 cm ³ of S .	Vigorous reaction takes place and the sodium disappears.		
				(1)
(ii)	Add equal volumes of potassium dichromate(VI) and dilute sulfuric acid to 2 cm ³ of S and heat the mixture on a water	Orange solution goes green.		
	bath.			(1)

(iii) Use the information and results above to suggest the **displayed formulae** for two possible structures for **S**.

(iv) The nmr spectrum of **S** is shown below. Use the spectrum to identify compound **S**. Explain your choice.

S is	
Explanation	
•	
	(2)

(b) Complete the table below by filling in the **inferences** column. In each case you should indicate what the test and observations tell you about the original compound.

	Test	Observations	Inferences	
(i)	Add 1 cm ³ of T to 2 cm ³ of 2,4-dinitrophenylhydrazine solution. Leave the mixture to stand.	An orange precipitate forms.		(1)
(ii)	Add 1 cm ³ of T to Tollens' reagent (a solution of silver nitrate in ammonia) and warm the mixture.	A silver mirror is produced on the inside of the tube.		
				(1)

L	eav	e
hl	an	k

(iii) Use your inferences in (i) and (ii) to suggest a displayed formula for T

(1)

(c) Complete the table below by filling in the inferences column. In each case you should indicate what the test and observations tell you about the original compound.

	Test	Observations	Inferences	
(i)	Add 1 cm ³ of sodium carbonate solution to 2 cm ³ of U. Test the gas	Vigorous effervescence.		
	evolved with limewater.	Gas evolved turns limewater cloudy.		
				(1)
(ii)	Mix 2 cm ³ of S with an equal volume of U.	Fruity smelling liquid produced.		
	Add 1 cm ³ of concentrated sulfuric acid and heat the mixture. Pour the mixture into			
	a beaker of sodium carbonate solution.			(1)

(iii) Based on your inferences from (i) and (ii) suggest a displayed formula for U.

				(1)
	pound X is an anhydrous	s salt. Tilling in the inferences colum	(Total 12	marks)
J0111	Test	Observations	Inferences	
(a)	Colour	X is a brown solid.		
				(1)
(b)	Add 2 cm ³ of water to 0.5 g of solid X .	Heat evolved and a green solution is produced.		
				(1)
(c)	Divide the solution from (b) into two equal portions and to one portion add excess dilute ammonia solution.	A pale blue precipitate is produced which dissolves in excess ammonia solution to give a deep blue solution.		(1)
d)	To the second portion add 3 cm ³ dilute nitric acid (an excess), followed by 1 cm ³ of silver nitrate solution.	A white precipitate is produced.		

Edexcel GCE in Chemistry © Edexcel Limited 2007 Sample Assessment Materials 23

3. In an exercise to investigate the percentage by mass of iron in an iron(II) compound, a student made up 250 cm³ of the solution of the iron(II) compound in a volumetric flask using dilute sulfuric acid. The student then titrated 25.0 cm³ portions of the solution, to which excess dilute sulfuric acid had been added, with 0.0200 mol dm⁻³ aqueous potassium manganate(VII) solution.

The equation for the reaction is:

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(1)$$

(a) Suggest **one** reason why the iron(II) solution was made up in dilute sulfuric acid and more dilute sulfuric acid was added before each titration was carried out.

(b) The student's results are given in the tables below.

Table 1

Mass of weighing bottle + iron(II) compound	11.68 g
Mass of emptied weighing bottle	4.52 g
Mass of iron(II) compound used	7.16 g

Table 2

Solution in burette: 0.0200 mol dm⁻³ potassium manganate(VII).

Solution in flask: 25.00 cm³ of iron(II) compound.

Titration number	Trial	1	2	3	4
Burette reading (final) /cm ³	26.50	25.85	26.60	26.00	26.80
Burette reading (initial) /cm ³	0.00	0.15	0.30	0.20	1.05
Titre / cm ³	26.50				

Complete Table 2 by filling in the missing data.

(1)

Leave blank

		••••
		••••
		••••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		(5
List the numbers of the titration	ons that you should use to calculate the mean titre.	
		•••
Calculation of mean		

	(*)	
(e)	(1)	Calculate the mass of iron in 250 cm ³ of the iron(II) solution. Use the Periodic Table as a source of data.
		(4)
	(ii)	Calculate the percentage by mass of iron in the iron(II) salt.

(f)	When making up the solution of the iron(II) salt, another student, by mistake, added too much dilute sulfuric acid to the graduated flask before shaking the contents so	blank
	that the total volume was over 250 cm ³ .	
	Explain the effect this mistake would have on the student's volume of potassium manganate(VII) solution used in the titration.	
	(2)	Q3
	(Total 16 marks)	
	(Total 16 marks)	

4.	Methyl benzoate can be hydrolysed by heating under reflux with a solution of sodium
	hydroxide to form sodium benzoate and methanol.

$$C_6H_5CO_2CH_3(l) + NaOH(aq) \rightarrow C_6H_5CO_2^-Na^+(aq) + CH_3OH(aq)$$

The sodium benzoate can be converted into benzoic acid by adding excess hydrochloric acid.

$$C_6H_5CO_7^-(aq) + H^+(aq) \rightarrow C_6H_5CO_7H(s)$$

A student was asked to make 5.0 g of benzoic acid and told that the procedure used gives a 60 % yield of benzoic acid.

(a) Calculate the mass of methyl benzoate that should be used to produce 5.0 g of benzoic acid.

[Molar Masses: $C_6H_5CO_2CH_3 = 136 \text{ g mol}^{-1}$ $C_6H_5CO_2H = 122 \text{ g mol}^{-1}$]

(2)

(b) The student was told to add $20~\rm cm^3$ of $4.0~\rm mol~dm^{-3}$ sodium hydroxide solution (an excess) to the methyl benzoate.

(i) Is it better to measure out the volume of sodium hydroxide solution using a pipette, a burette or a measuring cylinder? Justify your answer.

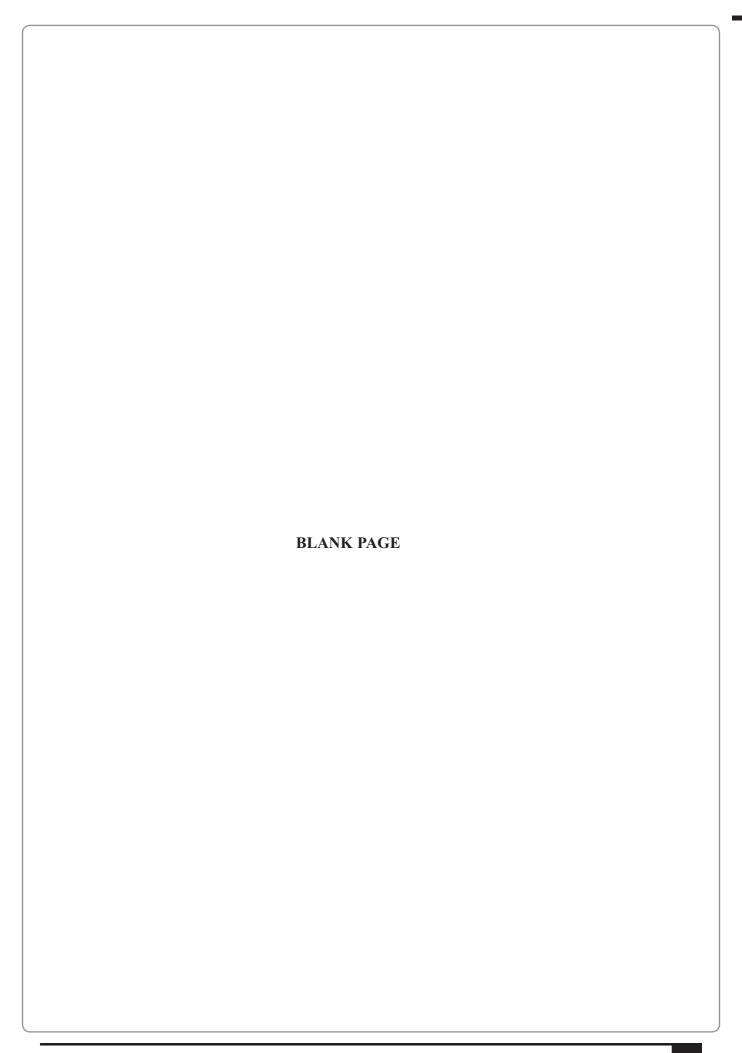
.....

.....

(ii) In addition to wearing goggles and a laboratory coat, what other safety precaution should be taken when handling 4.0 mol dm⁻³ sodium hydroxide solution? Justify your answer.

(2)

Leave
hlank


	The mixture was heated under reflux for 15 minutes and then poured into a 100 cm beaker.
	Draw a fully labelled diagram of the apparatus used for heating under reflux.
	(4
(d)	
(d)	Dilute hydrochloric acid was added to the beaker, stirring continuously, until the solution was acidic.
(d)	Dilute hydrochloric acid was added to the beaker, stirring continuously, until the solution was acidic. Suggest how you would carry out a simple test to indicate that you have addesufficient hydrochloric acid.
(d)	Dilute hydrochloric acid was added to the beaker, stirring continuously, until the solution was acidic. Suggest how you would carry out a simple test to indicate that you have addes sufficient hydrochloric acid.
(d)	Suggest how you would carry out a simple test to indicate that you have adde

Leave blank

•	Describe how the recrystallization is carried out, explaining how the method would emove both soluble and insoluble impurities.
•	
•	

		Leave
(f)	The melting temperature of benzoic acid is 122 °C. The student's sample was impure. Suggest how the melting temperature of the sample would differ from that of pure benzoic acid.	
	(2)	Q4
	(Total 17 marks)	
	TOTAL FOR PAPER: 50 MARKS	
	END	

Nach 1987	fra	ca 1	rut 8	pot	so 2	1_	
* Lanthanide ser * Actinide series	[223] Fr francium 87	132.9 Cs caesium 55	85.5 Rb rubidium s	39.1 K potassium 19	Li Lithium I 3 3 23.0 Na sodium n	Ξ	_
* Lanthanide series * Actinide series	[226] Ra radium 88	137.3 Ba barium 56	87.6 Sr strontium 38	40.1 Ca calcium 20	9.0 Be beryllium 4 24.3 Mg magnesium 12	(2)	2
¥.	[227] Ac* actinium 89	138.9 La* lathanum 57	88.9 Y yttrium 39	45.0 Sc scandium 21	(3)		
140 Ce cerium 58 232 Th thorium 90	[261] Rf rutherfordium 104	178.5 Hf hafnium 72	91.2 Zr zirconium 40	47.9 Ti titanium 22	atomic atomic		
141 Pr praseodymium 59 [231] Pa protactinium 91	[262] Db dubnium 105	180.9 Ta tantalum 73	92.9 Nb niobium 41	50.9 V vanadium 23	relative atomic mass atomic symbol name atomic (proton) number	Key	
	[266] Sg seaborgium 106	183.8 W tungsten 74	95.9 Mo molybdenum 38	52.0 Cr chromium 24	mass hbol number		-
144 [147] Nd Pm neodymium promethium 60 61 238 [237] U Np uranium neptunium 92 93	[264] Bh bohrium 107	186.2 Re rhenium 75	[98] Tc technetium 43	52.0 54.9 Cr Mn chromium manganese 24 25	(7)		he Pe
[147] 150 152 Pm Sm Eu promethium samarium europium 61 62 63 [237] [242] [243] Np Pu Am neptunium plutonium americium 93 94 95	[277] Hs hassium 108	190.2 Os osmium 76	101.1 Ru ruthenium 44	55.8 Fe iron 26	(8)	1.0 H hydrogen	The Periodic Table of Elements
152 Eu europium 63 [243] Am americium	[268] Mt meitnerium 109	192.2 Ir iridium 77	102.9 Rh rhodium 45	58.9 Co cobalt 27	(9)	·	c Tab
157 Gd gadolinium 64 [247] Cm curium 96	[268] [271] [272] Mt Ds Rg meitnerium damstadtium roentgenium 109 110 111	195.1 Pt platinum 78	106.4 Pd palladium 46	58.7 Ni nickel 28	(10)		le of
159 Tb terbium 65 [245] BK berkelium	[272] Rg roentgenium	197.0 Au gold 79	107.9 Ag silver 47	63.5 Cu copper 29	(11)		Elem
dysprosium 66 [251] Cf californium 98		200.6 Hg mercury 80	112.4 Cd cadmium 48	65.4 Zn zinc 30	(12)		ents
163 165 Dy Ho dysprosium holmium 66 67 [251] [254] Cf Es californium einsteinium 98 99	nents with	204.4 TI thallium 81	114.8 In indium 49	69.7 Ga gallium 31	10.8 B boron 5 27.0 Al aluminium	(13)	ω
167 Er erbium 68 [253] Fm fermium 100	atomic nu but not	207.2 Pb lead 82	118.7 Sn tin 50	72.6 Ge germanium 32	12.0 C carbon 6 28.1 Silicon 14	(14)	4
169 Tm thulium 69 [256] Md mendelevium	tomic numbers 112-116 hav but not fully authenticated	209.0 Bi bismuth 83	121.8 Sb antimony 51	74.9 As arsenic 33	14.0 N nitrogen 7 31.0 P phosphorus	(15)	Oi
169 173 175 Tm Yb Lu thulium ytterbium lutetium 69 70 71 [256] [254] [257] Md No Lr mendelevium nobelium lawrencium 101 102 103	-116 have nticated	[209] Po polonium 84	127.6 Te tellurium 52	79.0 Se selenium 34	16.0 O oxygen 8 8 32.1 S sulfur	(16)	6
175 Lu lutetium 71 [257] Lr lawrencium 103	Elements with atomic numbers 112-116 have been reported but not fully authenticated	[210] At astatine 85	126.9 iodine 53	79.9 Br bromine 35	19.0 F fluorine 9 35.5 Cl chlorine	(17)	7
	ted	[222] Rn radon 86	131.3 Xe xenon 54	83.8 Kr krypton 36	20.2 Ne neon 10 39.9 Ar argon 18	(18) 4.0 He helium 2	0 (8)

Edexcel GCE in Chemistry © Edexcel Limited 2007 Sample Assessment Materials 33

C Sample mark schemes

General marking guidance	.37
Unit 3B: Chemistry Laboratory Skills I Alternative	.39
Unit 6B: Chemistry Laboratory Skills II Alternative	.47

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Unit 3B: Chemistry Laboratory Skills I Alternative

Question Number.	Question		
1(a)(i)	flame		
	Acceptable answers	Reject	Mark
	Lilac	Purple/mauve	1

Question Number.	Question		
1(a)(ii)	The anion in A is		
	Acceptable answers	Reject	Mark
	Chloride / Cl ⁻	Chlorine/Cl/Cl ₂	1

Question Number.	Question		
1(a)(iii)	A vigorous reaction occurs withforming above the test tube		
	Acceptable answers	Reject	Mark
	White smoke/fumes	Steamy fumes	1
1(a)(iii)	The gas formed in the reaction between A and concentrated sulfuric acid is		
	Acceptable answers	Reject	Mark
	Hydrogen chloride / HCl		1

Question Number.	Question		
1(a)(iv)	Write an equation to show the reaction occurring between ammonia and the gas formed in the reaction between A and concentrated sulfuric acid. State symbols are not required.		
	Acceptable answers	Reject	Mark
	NH ₃ + HCl → NH ₄ Cl Ignore state symbols Consequential on the halide in 1 (a)(ii)		1

Question Number	Question		
1(a)(v)	Describe how you would carry out a flame t	est in the laborator	у.
	Acceptable answers	Reject	Mark
	Add (any) HCl (to A) (1) Dip platinum/nichrome wire/silica rod in sample (1) Hold wire in flame (1) Or other acceptable methods		3

Question Number.	Question		
1(b)(i)	The cation in A is		
	Acceptable answers	Reject	Mark
	Barium / Ba ²⁺	Ba	1

Question Number	Question		
1(b)(ii)	Brown gas evolved.		
	Acceptable answers	Reject	Mark
	Nitrogen dioxide / NO ₂ (1)		1
1(b)(ii)	Splint re-lights.		
	Acceptable answers	Reject	Mark
	Oxygen / O ₂ (1)		1

Question Number.	Question		
1(b)(iii)	The white precipitate is		
	Acceptable answers	Reject	Mark
	BaSO ₄ / barium sulfate		1

Question Number.	Question		
1(b)(iv)	Give the formula of compound B		
	Acceptable answers	Reject	Mark
	Ba(NO ₃) ₂ Consequential on cation in 1 (b)(i)		1

Question Number	Question		
2(a)	Describe a test and its result to show the pr	esence of the C=C	group in C.
	Acceptable answers	Reject	Mark
	Test Bromine / Br ₂ water / solution/aqueous bromine (1) Result Yellow to colourless / Yellow is decolorised (1) OR Test acidified KMnO ₄ /potassium manganate(VII) (1) Result Purple to colourless / purple decolorised (1) OR Test alkaline KMnO ₄ /potassium manganate (VII) (1) Result purple to green (1) OR Test neutral solution of KMnO ₄ /potassium manganate (VII) (1) Result Purple to brown precipitate (1)	Bromine / Br ₂ alone Decolorised alone	2

Question Number.	Question		
2(b)(i)	2(b)(i) When C is warmed with excess aqueous potassium hydroxide the following reaction occurs. $CH_2 = CH - CH_2Br + OH - \longrightarrow CH_2 = CH - CH_2OH + Br^-$		
To test for the presence of the bromide ions formed dilute nitric aci followed by aqueous silver nitrate is added to the cooled mixture.			
	Why is dilute nitric acid added?		
	Acceptable answers	Reject	Mark
	Neutralise (KOH/OH ⁻) Ignore 'acidify'		1

Question Number	Question			
2(b)(ii)	Describe what you would see as the aqueou	e what you would see as the aqueous silver nitrate is added.		
	Acceptable answers	Reject	Mark	
	Cream/off-white/pale yellow precipitate	White/yellow precipitate	1	

Question Number	Question		
2(c)(i)	Describe two observations that you would expect to make when a small piece of sodium is added to some $CH_2=CH-CH_2OH$ in a crucible.		
	Acceptable answers	Reject	Mark
	Any two: Bubbles/effervescence/fizzing (1)	Gas/ hydrogen	2
	Na disappears (1) White solid formed (1)		

Question Number	Question		
2(c)(ii)	Why is it important that the crucible is dry before it is used in this test?		his test?
	Acceptable answers	Reject	Mark
	Water reacts with Na	Dangerous	1

Question Number.	Question		
3(a)(i)	On the grid below plot a graph of temperat	rid below plot a graph of temperature(°C) against time (mins)	
	Acceptable answers	Reject	Mark
	Appropriate scales (1) Plotting points (1)		
	Joining points with straight lines (1)		3

Question Number	Question		
3(a)(ii)	Use your graph to find the maximum tempe working on the graph.	Ise your graph to find the maximum temperature change, ΔT . Show your vorking on the graph.	
	Acceptable answers	Reject	Mark
	Working on graph to show temperature at 3.5 minutes (1) Calculating temperature change must be in the range 43.5 - 44.5 (1)		2

Question Number	Question		
3(a)(iii)	Suggest one reason why a series of temperature readings is taken rather than the initial and final temperatures.		
	Acceptable answers	Reject	Mark
	Allows for cooling (correction) (1)	More accurate.	1

Question Number	Question		
3(b)(i)	Calculate the energy transferred to the solution. Express your answer in kJ. [Assume that the specific heat capacity of the solution is 4.18 J K ⁻¹ g ⁻¹]		
	Acceptable answers	Reject	Mark
	$\frac{50 \times 4.2 \times 44}{1000} = 9.2/9.24 \ kJ$	Answer in J	2
	Use of 50 (1) Answer in kJ (1) must be at least 2 sf		
	Mark for answer only. Cq on ΔT .		

Calculate the number of moles of copper(II)	16 4 7 50 3	
Calculate the number of moles of copper(II) sulfate in 50 cm ³ of 1.00 mol dm ⁻³ solution.		
Acceptable answers	Reject	Mark
$\frac{50 \times 1.00}{1000} = 0.050 \text{ (mol)}$		1
1	Solution. Acceptable answers $\frac{50 \times 1.00}{1000} = 0.050 \text{ (mol.)}$	Solution. Acceptable answers $\frac{50 \times 1.00}{1000} = 0.050 \text{ (mol)}$

Question Number	Question			
3(b)(iii)		Talculate the enthalpy change, ΔH , for this reaction. Give your answer in kJ nol ⁻¹ and to three significant figures. Include a sign with your answer.		
	Acceptable answers	Reject	Mark	
	$\frac{Answer\ to\ (b)(i)}{Answer\ to\ (b)(ii)} = -180\ (kJ\ mol^{-1})\ (1)$		3	
	Value of $\triangle H$ to 2sf (-18)(1) Negative sign (1)			

Question Number	Question		
3(c)	Suggest two improvements to the procedure that may give more accurate results.		
	Acceptable answers	Reject	Mark
	Any two: Pipette to measure CuSO ₄ (1) Polystyrene cup not beaker (1) Stirring (1) Add a lid (1) Take account of specific heat capacity and mass of beaker (1)	More accurate thermometer / repeat the experiment	2

Question Number	Question			
4(a)	Calculate the mass and volume of cyclohex preparation.	lculate the mass and volume of cyclohexanol to be used in the eparation.		
	Acceptable answers	Reject	Mark	
	0.1 x 100.0 = 10.0 / 10 g (1) 10 ÷ 0.96 = 10.4 cm ³ (1) Must include units		2	

Question Number	Question			
4(b)		Suggest the most appropriate piece of apparatus for measuring the volume of cyclohexanol calculated in (a). The volume need only be measured to an accuracy of + 0.5 cm ³ .		
	Acceptable answers	Reject	Mark	
	Measuring cylinder	Pipette, burette.	1	

Question Number	Question				
4(c)	Draw a diagram of the apparatus you would use to carry out the procedure described in point 4 of the procedure.				
	Acceptable answers	Reject	Mark		
	RB flask heated (1) Thermometer bulb in correct position (1) Water-cooled condenser and Water flow correct (1) Apparatus overall correct and safe - not sealed (1) 1st three marks may be awarded independently.		4		

Question Number	Question				
4(d)	How would you make up a saturated salt solu	How would you make up a saturated salt solution?			
	Acceptable answers	Reject	Mark		
	Add salt to water until no more dissolves, OR heat mixture of salt and water, allow to cool (and decant saturated solution) (1)		1		

Question Number	Question				
4(e)	On the diagram of the separating funnel label the cyclohexene layer. Explain how you would use the separating funnel to transfer the cyclohexene layer to a small flask				
	Acceptable answers	Reject	Mark		
	Upper layer is cyclohexene. (1) Run off lower layer (to waste) then run off upper layer(to flask)/pour out upper layer (1) 2 nd mark cq on layer mark.		2		

Question Number.	Question			
4(f)	Why is anhydrous calcium chloride added to the cyclohexene?			
	Acceptable answers	Reject	Mark	
	To dry it / drying agent (1)	Purify	1	

Question Number.	Question			
4(g)	Suggest one reason why the instruction in point 8 of the procedure is to collect the liquid that distils off between 81°C and 85°C rather than just at the boiling temperature of cyclohexene.			
	Acceptable answers	Reject	Mark	
	Cyclohexene still impure / thermometer reading not steady		1	

Question Number	Question		
4(h)(i)	Calculate the maximum yield, in grams, of cy prepared from 0.1 mol of cyclohexanol.	clohexene that ma	y be
	Acceptable answers	Reject	Mark
	0.1 x 82.0 = 8.20 / 8.2 g Accept answer only.	Any other answers.	1

Question Number	Question			
4(h)(ii)	A student following the procedure described prepares 4.10g of cyclohexene.			
	Calculate the percentage yield of cyclohexene in the preparation.			
	Acceptable answers	Reject	Mark	
	<u>4.10</u> x 100 = 50.0/ 50 %		1	
	8.20			
	Cq on answer in (h)(i).			
	Accept answer only.			

Question Number	Question		
4(h)(iii)	Suggest two reasons why this preparation doe	es not produce a 10	00% yield.
	Acceptable answers	Reject	Mark
	Two from		
	Reaction is incomplete (1)		
	Side reactions / other products (1)		2
	Stays in aqueous layer (1)		

Unit 6B: Chemistry Laboratory Skills II Alternative

Question Number.	Question				
1(a)(i)	S, T and U are organic liquids each of which has three carbon atoms and each contains only one functional group.				
	Complete the table below by filling in the inferences column. In each case you should indicate what the test and observations tell you about the original compound.				
	Test	Observation		Inferenc	ces
	Add a small piece of sodium to 2 cm ³ of S	f Vigorous reaction			
	Acceptable answers		Reje	ect	Mark
	Alcohol or carboxylic act both required. OR "OH or COOH" both req				1

Question Number.	Question				
1 (a) (ii)					
	Test	Observation		Inferen	ces
	Add equal volumes of	Orange solution go	oes		
	potassium dichromate(VI) and dilute sulfuric acid to 2 cm³ of S and heat the mixture on a water bath	green			
	Acceptable answers		Reje	ect	Mark
	"Primary or secondary a /OH / "not COOH"	lcohol" / not acid	its o	t COOH" on own unless or COOH" n in (a) (i)	1

Question Number	Question			
1 (a) (iii)	Use the information and results above to suggest the displayed formulae for two possible structures for S .			
	Acceptable answers	Reject	Mark	
	H H H H-C-C-C-O-H H H H H H H H H H H-C-C-C-C-H H H H H H-C-C-C-H H OH H		1	

Question Number.	Question				
1 (a) (iv)	The nmr spectrum of S is shown below. Use the spectrum to identify compound S . Explain your choice.				
	Acceptable answers Reject Mark				
	Propan - 2-ol or formula (1) 3 peaks so three different types of proton (1) Argument based on it not being propan-1-ol which would show 4 peaks		2		

Question Number	Question					
1 (b) (i)		Complete the table below by filling in the inferences column. In each case you should indicate what the test and observations tell you about the original compound.				
1	Test	Observation In		Inferen	nferences	
	Add 1 cm ³ of T to 2 cm ³ of 2,4-dinitrophenylhydrazine solution. Leave the mixture to stand.	An orange precipitate forms.				
	Acceptable answers		Reje	ct	Mark	
	Carbonyl group / C=O Or "Aldehyde or ketone" - b mark	oth needed for			1	

Question Number	Question					
1 (b) (ii)	Test Add 1 cm³ of T to Tollens' reagent (a solution of silver nitrate in ammonia) and warm the mixture.	Observation A silver mirror is produced on the inside of the tub		Inferen	ces	
	Acceptable answers		Reje	ct	Mark	
	(Reducing agent so) Alder ketone)	hyde / CHO (not	its ov	ketone" on wn unless nyde or ne given in i)	1	

Question Number	Question			
1 (b) (iii)	Use your inferences in (i) and (ii) to suggest a displayed formula for T.			
	Acceptable answers	Reject	Mark	
	H H H H-C-C-C=O H H H	Name	1	

Question Number	Question				
1 (c) (i)	Complete the table below by filling in the inferences column. In ea you should indicate what the test and observations tell you about to original compound.				
	Test	Observation	Inference	ces	
	Add 1 cm ³ of sodium carbonate solution to 2 cm ³ of U. Test the gas evolved with limewater.	Vigorous effervescence. Gas evolved turns limewater cloudy.			
	Acceptable answers		Reject	Mark	
	(Carbon dioxide evolved) (present)	acid group / COOH		1	

Question Number	Question			
1 (c) (ii)	Test Mix 2 cm³ of S with an equal volume of U. Add 1 cm³ of concentrated sulfuric acid and heat the mixture. Pour the mixture into a beaker of sodium carbonate solution.	Observation Fruity smelling li produced.	-	Inferences
	Acceptable answers		Reject	Mark
	Ester (formed from acid l	J and alcohol S)		1

Question Number	Question		
1 (c) (iii)	Based on your inferences from (i) and (ii) su	iggest a displayed 1	ormula for U.
	Acceptable answers	Reject	Mark
	H H O—H H—C—C—C=O H H		1

Question Number	Question			
1 (d)	Write the equation for the reaction between S and U . In your answer show the structural formula of the product.			
	Acceptable answers	Reject	Mark	
	CH ₃ CH(OH)CH ₃ + CH ₃ CH ₂ COOH → CH ₃		1	
	$\begin{array}{c} CH_3 \\ CH_3CH_2C-O-CH-CH_3 & + & H_2O \\ O \\ \end{array}$			
	allow TE on (a) (iv) if propan-1-ol given			

Question Number	Question				
2 (a)	Compound X is an anhydrous salt. Complete the table below by filling in the inferences column.				
	Test	Observation Inferences			
Colour X is a brown		X is a brown soli	d.		
	Acceptable answers		Reject	Mark	
	Transition metal compo	ound		1	

Question Number	Question				
2 (b)	Test Add 2 cm³ of water to 0.5 g of solid X.	Observation Heat evolved and green solution is produced.		Inferences	
	Acceptable answers		Reject		Mark
	Any two from: Copper 2+, Nickel 2+, Ch 2+ OR Cu ²⁺ Ni ²⁺ Cr ³⁺ Fe ²⁺	romium 3+, Iron			1

Question Number.	Question				
2 (c)	Test Divide the solution from (b) into two equal portions and to one portion add excess dilute ammonia solution.	Observation A pale blue precipitate is produced which dissolves in exces ammonia solution give a deep blue solution.	ss	Inferen	ces
	Acceptable answers		Reje	ct	Mark
	Copper 2+ (complex form Ignore Cu(OH) ₂ ppt.	ed - Cu(NH₃)Ø⁺)			1

Question Number	Question				
2 (d)	Test To the second portion add 3 cm³ dilute nitric acid (an excess) followed by 1 cm³ of silver nitrate solution.	Observation A white precipita is produced.	-	Inferen	ces
	Acceptable answers		Reject		Mark
	Chloride /Cl-				1

Question Number	Question				
2 (e)	Which observation suggests that X is anhydr	ich observation suggests that X is anhydrous?			
	Acceptable answers	Reject	Mark		
	Heat evolved		1		
	OR				
	Colour change when water added (1)				

Question Number	Question			
3 (a)	compound, a student made up 250 cm ³ of compound in a volumetric flask using dilutitrated 25.0 cm ³ portions of the solution had been added, with 0.0200 mol dm ⁻³ ac solution. The equation for the reaction is:			
	Suggest one reason why the iron(II) solution was made up in dilute sulfuric acid and more dilute sulfuric acid was added before each titration was carried out.			
	Acceptable answers	Reject	Mark	
	8 mols of H ⁺ are needed in the equation for the titration reaction OR to prevent oxidation by the air (of Fe ²⁺)		1	

Question Number	Question						
3 (b)	Complete Table 2 by f	illing in t	he missi	ng data.			
	Answer						Mark
	Titration number	Trial	1	2	3	4	1
	Burette reading (final) /cm³	26.50	25.85	26.60	26.00	26.80	
	Burette reading (initial) /cm³	0.00	0.15	0.30	0.20	1.05	
	Titre / cm³	26.50	25.70	26.30	25.80	25.75	
	All four answers correct						

Question Number	Question				
3 (c)	Outline the procedure that should be followed to carry out titration number 1. Include in your answer the names of any apparatus used and explain how you will recognise the end-point of the titration. Acceptable answers Reject Mark				
	 Transfer 25.0 cm³ of the iron(II) solution using a pipette and pipette filler to a titration / conical flask (1) Add (25 cm³) / an excess / any stated amount > 10 cm³ of dilute sulphuric acid (1) Add 23 - 24 cm³ / some reasonable volume of the potassium manganate(VII) with shaking from burette (1) Add the potassium manganate solution one drop at a time / drop wise (1) Until the first sign of a permanent pink colour(1) No mark for use of white tile NB: If answer does not run in a reasonable amount before dropwise addition to end point max 4 		5		

Question Number	Question			
3 (d)	List the numbers of the titrations that you will use to calculate the mean titre.			
	Acceptable answers	Reject	Mark	
	Titres used Numbers 1, 3 and 4 (1)			
	Mean $\frac{25.7 + 25.8 + 25.75}{3} = 25.75 \text{ cm}^3$		2	
	(1) Allow TE			

Question Number	Question		
3 (e) (i)	Calculate the mass of iron in 250 cm ³ of the periodic table as a source of data.	e iron(II) solutio	n. Use the
	Acceptable answers	Reject	Mark
	Mols of manganate(VII) used in titration		
	$=\frac{25.75\times0.0200}{1000}=5.15\text{x}10^{-4}\text{ mols} \textbf{(1)}$		
	Mols of iron(II) in 25.00 cm ³ of solution = $5.15 \times 10^{-4} \times 5$ (1) = 2.575 x 10^{-3} mols		4
	Mols of iron(II) in 250 cm ³ of solution = $2.575 \times 10^{-3} \times 10$ (1) = 0.02575 mols		
	Mass of iron in 250 cm ³ of solution = 0.02575 x 55.8 = 1.44g (1) consequential or mean titre		

Question Number	Question		
3 (e) (ii)	Calculate the percentage by mass of iron in	the iron(II) salt.	
	Acceptable answers	Reject	Mark
	% iron in compound = $\frac{(1.437)}{7.16} \times 100 = 20.07\% / 20.1\%$ (1) correct answer with no working (1)		1

Question Number	Question			
3 (f)	When making up the solution of the iron(II) salt, another student, by mistake, added too much dilute sulfuric acid to the graduated flask before shaking the contents so that the total volume was over 250 cm ³ . Explain the effect this mistake would have on the student's volume of potassium manganate(VII) solution used in the titration.			
	Acceptable answers	Reject	Mark	
	The volume of potassium manganate(VII) used will be smaller than the correct figure (1)		2	

Question Number	Question		
4 (a)	Calculate the mass of methyl benzoate that of benzoic acid. [Molar Masses: $C_6H_5CO_2CH_3 = 136 \text{ g mol}^{-1}$	t should be used to p $C_6H_5CO_2H = 122 g$	
	Acceptable answers	Reject	Mark
	$\frac{5 \times 100 \times 136}{122 \times 60} = 9.29 \text{ g}$		2
	1 mark for expression 1 mark for correct answer correct answer with no working (2)		

Question Number	Question		
4 (b) (i)	The student was told to add 20 cm³ of 4.0 mol dm⁻³ sodium hydroxide solution (an excess) to the methyl benzoate. Is it better to measure out the volume of sodium hydroxide solution using a pipette, a burette or a measuring cylinder? Justify your answer.		
	Acceptable answers	Reject	Mark
	Measuring cylinder (1) Sodium hydroxide in excess so no need for great accuracy / safer / quicker (1)		2

Question Number	Question			
4 (b) (ii)	In addition to wearing goggles and a laboratory coat, what other safety precaution should be taken when handling 4.0 mol dm ⁻³ sodium hydroxide solution? Justify your answer.			
	Acceptable answers	Reject	Mark	
	Gloves because 4 M NaOH corrosive		1	

Question Number	Question				
4 (c)	The mixture was heated under reflux for 15 minutes and then poured into a 100 cm ³ beaker.				
	Draw a fully labelled diagram of the apparatus used for heating under reflux.				
	Acceptable answers	Reject	Mark		
	Flask +contents + heating (1) Vertical condenser (1) condenser water flow (1) Apparatus overall correct and safe - not sealed (1)		4		

Question Number	Question				
4 (d)	Dilute hydrochloric acid was added to the beaker, stirring continuously, until the solution was acidic.				
	Suggest how you would carry out a simple to added sufficient hydrochloric acid.	Suggest how you would carry out a simple test to indicate that you have added sufficient hydrochloric acid.			
	Acceptable answers	Reject	Mark		
	Remove sample on a glass rod(1) test with suitable indicator paper until acidic (1)		2		

Question Number	Question			
4 (e)	The benzoic acid was separated from the mixture by filtration and recrystallized from hot water.			
	Describe how the recrystallization is carried out, explaining how the method would remove both soluble and insoluble impurities.			
	Acceptable answers	Reject	Mark	
	Dissolve in minimum of hot water(1) Filter hot to remove insoluble impurities(1) Cool (in ice bath) (1) Filter cold to remove soluble impurities / leave soluble impurities in the solution(1)		4	

Question Number	Question			
4 (f)	The melting temperature of benzoic acid is 122°C. The student's sample was impure. Suggest how the melting temperature of the sample would differ from that of pure benzoic acid.			
	Acceptable answers	Reject	Mark	
	Lower than 122°C(1) Melt over a range of temperatures/sharp (1) - stand alone		2	

Edexcel, a Pearson company, is the UK's largest awarding body, offering academic and vocational qualifications and testing to more than 25,000 schools, colleges, employers and other places of learning in the UK and in over 100 countries worldwide. Qualifications include GCSE, AS and A Level, NVQ and our BTEC suite of vocational qualifications from entry level to BTEC Higher National Diplomas, recognised by employers and higher education institutions worldwide.

We deliver 9.4 million exam scripts each year, with more than 90% of exam papers marked onscreen annually. As part of Pearson, Edexcel continues to invest in cutting-edge technology that has revolutionised the examinations and assessment system. This includes the ability to provide detailed performance data to teachers and students which helps to raise attainment.

We will inform centres of any changes to this issue. The latest issue can be found on the Edexcel website: www.edexcel.org.uk.

Acknowledgements

This document has been produced by Edexcel on the basis of consultation with teachers, examiners, consultants and other interested parties. Edexcel acknowledges its indebtedness to all those who contributed their time and expertise to its development.

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Edexcel will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

References to third-party material made in this document are made in good faith. Edexcel does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

Authorised by David Davies

Publications code UA019729

All the material in this publication is copyright © Edexcel Limited 2008

January 2008

For more information on Edexcel and BTEC qualifications please visit our website: www.edexcel.org.uk

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH. VAT Reg No 780 0898 07