Nuffield Advanced Chemistry Special Study Biochemistry

Exam questions: answers and marking guide

Q1 [Adapted from Edexcel Chemistry (Nuffield)1996]

Q2 [Adapted from Edexcel Chemistry (Nuffield)1997]

(a)	(i) (ii)	deoxyribonucleic acid (1) 3.4 nm: the turn/pitch/distance between maxima of the	(1)
	(iii)	helix (1) 0.34 nm: the hydrogen bonded base-pairs (1) the four bases link only in specific pairs (1)	(2)
	(111)	adenine/thymine cytosine/guanine (1)	(2)
	(iv)	8 (1)	(1)
	(v)	a section of DNA (1) responsible for a characteristic of the organism (1)	(2)
(b)	(i)	cells crushed to release contents (1) centrifuging	
		chromatography filtration filtration	(3)
	(ii)	rate increases with conc (1) plenty of active sites available (1)	
		rate levels off (1) all sites full (1)	(4)
	(iii)	enzyme inactive/denatured (1) active site changes shape (1 substrate no longer 'fits' (1)	.) (3)
	(iv)	enzyme not permanently affected by cooling and re- warming (1) results similar to those shown (1)	(2)
(c)	(i)	attaching enzyme to some other material to take it out of solution (1)	(1)
	(ii)	adsorption on insoluble support (1) trapping in a gel (1) covalent bonding to a support (1)	ny three
		encapsulation behind semi-permeable membrane (1)	(3)
	(iii)	can be re-used (1) fewer side reactions (1) quicker reaction (1) can be continuously used (1) definition	
		higher concentrations used (1)	(2)
	(iv)	shape of two forms is different (1) one is affected by the enzyme, other is not (1)	(2)
	(v)	nitrogen-containing fertilizers could be made (1)	~ /
		without the need to manufacture ammonia synthetically (1)	(2)
		TOTAL	30

Q3 [Adapted from Edexcel Chemistry (Nuffield) 1998]

(a)	(i)	hydrolysis (1)	(1)
	(ii)	food storage (1) can be utilised when other sources of	
		glucose fail (1)	(2)
	(iii)	active site: place on an enzyme molecule into which	
		substrate fits (1)	
		allosteric site: another place where attachment may alter	
		active site (1)	(2)
	(iv)	phosphorylation (1)	(1)
	(v)	from carbon dioxide and water by photosynthesis (1)	(1)
(b)	(i)	messenger ribonucleic acid	(1)
	(ii)	adenine, cytosine, guanine, thymine, uracil (all correct	
		4, each error -1)	(4)
	(iii)	right-hand strand must be mRNA (1) has the uracil in it (1)	(2)
	(iv)	4 (1) each codon has 3 bases (1)	(2)
	(v)	all codons after the omission would be different (1)	
		different amino acids (1)	(2)
	(vi)	hydrogen-bonding (1)	(1)
(c)	(i)	X: 1 (1) rate proportional to concentration (1)	
		Y: 0 (1) rate unaffected by conc (1)	(4)
	(ii)	X: rate controlled by sucrose conc/plenty of sites	
		available (1)	
		Y: sites getting fewer, increase of sucrose compensate (1)	
		Z: fewer sites available, increase of sucrose conc. less	
		important (1)	(3)
	(iii)	competitive inhibitor binds to active site (1) but is	(0)
	(111)	displaced at higher substrate concentrations (1)	
		displaced at inglier substrate concentrations (1)	
		rate of 🔒	
		glucose	
		(1)	
		sucrose	(4)
			20
		TOTAL	30

Q4 [Adapted from Edexcel Chemistry (Nuffield) 1999]

(a)	(i)	A: adenine (1) B: deoxyribose (1) C: phospate (1)	(3)
	(ii)	hydrogen bonds (1) adenine thymine (1) cytosine guanine (1) (any pairing	(3)
	(iii) (iv) (v)	CTAAGGGT (1) uracil instead of thymine (1) ribose, not deoxyribose (1) anticodon is a triplet of bases (1) corresponding to a coda	(3) (1) (2)
		on mRNA (1) transfer RNA/tRNA (1)	(3)
(b)	(i) (ii)	maltose (1) the sodium chloride is a co-factor (strictly it is the chloride ions) (1) necessary for enzyme activity (1)	(1)
		without it the reaction would be much slower (1)	(3)
		increasing enzyme activity (1)	
		time (1)	
		activity decreases as active site de-protonates (1)	
	(iii)	optimum pH (1) pH	(4)
(c)	(i)	compound which helps to co-ordinate the activity of cells (1)	(1)
	(ii)	insulin released (from pancreas) when sugar levels are high (1) increases the passage of glucose through (same) cell walls (1) stimulates glycogen formation in muscles (1) stimulates glycolycis in the liver (1)	ree
		reduces synthesis of glucose from pyruvate (1) such behaviour accelerates glucose metabolism/reduces blood sugars (1)	(4)
	(iii)	gene for human insulin transferred to DNA of yeast (1) yeast fermented with glucose and synthesises (a precursor of) insulin (1)	(2)
	(iv)	made in large quantities (1)	(3)
	. /	identical to human insulin (animal insulin differs) (1) TOTAL	(2) 30

Q5 Adapted from [Adapted from Edexcel Chemistry (Nuffield) 2000]

		TOTAL	30
	(ii)	gene responsible identified (1) gene removed or replaced (1)	(2)
(d)	(i)	a length of DNA strand responsible for a characteristic of the organism (1)	(1)
	(iii)	advantage: reuseable (1) / continuously useable (1) / higher concentrations (1) / fewer side sections (1) <i>any two</i> disadvantage : initially more expensive (1)	r (3)
	(ii)	an enzyme fixed in position/not dissolved (1) absorbed on inert base (2) / trapped in gel (2) / covalently bonded to base (2) / use selectively permeable membrane (2)	(3)
(c)	(i)	substrate must fit active site (1) only one isomer has the right shape (1)	(2)
	(v)	gel (1) electrophoresis (1)	(2)
	(iv)	salts (1) enzymes (1) products of breakdown of plant cells (1) <i>any two</i>	(2)
(b)	(i) (ii) (iii)	to release contents of cells/break down cell walls (1) to minimise degradation of nucleic acids (1) denature enzymes (1) which would degrade DNA (1)	(1) (1) (2)
	(v)	tRNA has anticodon at one end (1) amino acid at the other (1) anticodon has complentary bases to codon so specific amino acid is added (1)	(3)
	(iv)	codon (1)	(1)
	(iii)	contains: ribose instead of deoxyribose (1) uracil instead of thymine (1)	(2)
	(ii)	cell wall (1) chloroplasts (1)	(2)
(a)	(i)	X: allows passage of certain components in and out of cell OWTTE (1)Y: (cytoplasm) where many enzyme reactions occur (1)Z: (mitochondrion) where citric acid cycle occurs (1)	(3)

Q6 [Adapted from Edexcel Chemistry (Nuffield) 2001]

		TOTAL	30
		disadvantage: worry about something which may not happen (1) difficulties over life insurance on mortgages (1) <i>any one</i>	(1)
	(iv)	advantage: early warning of potential problem (1) treatment possible (1) can decide to abort (1) <i>any two</i>	(2)
	(iii)	child has half its genes from each parent (1) affected parent may not pass on the faulty gene (1)	t (2)
	(ii)	if bases are incorrect (1) codons changed (1) different amino acid inserted (1)	(3)
(c)	(i)	a length of DNA strand (1) linked to a characteristic of the organism (1)	(2)
	(v)	use of fresh peas for each 'run' (1) might have different enzyme content (1)	(2)
	(iv)	no/very little oxygen produced (1)	(1)
	(iii)	20-40: normal increase of reaction rate due to more effective collisions (1)60-80: enzyme denatures (1) active site changes shape (1)	(3)
(0)	(i) (ii)	to allow enzymes to diffuse out (1)	(1) (1)
(h .)	(i)	$2H \cap \rightarrow 2H \cap + \cap$ (ignore state symbols) (1)	(1)
	(vi)	e.g. insulin (1) increases passage of glucose through cell membranes (1) / stimulates glycogen formation (1) / stimulates glycolysis (1 reduces glucose formation (1) any two points	l)/ (3)
	()	enzymes (1)	(2)
	(v)	<i>any two</i> reaction slow/activation energy high (1) catalysis by	(2)
	(iv)	photosynthesis (1) glycolin (1) phosphorylation (1) citric acid cycle (1)	(3)
	(iii)	in animals: from oxidation of food (1) in plants: from oxidation of food (1) from	
(a)	(i) (ii)	adenosine triphosphate (1) phosphorylation (1)	(1) (1)
< >	/•>		141