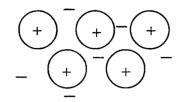
(i) (a) $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_3(aq) + CO_3(g) + H_3O(l)$ Reactants fully correct with "2" (1) Products fully correct including state symbols (1) (2 marks) All formulae correct with other errors - 1 max (ii) Molar mass of CaCO, $= 40 + 12 + 3 \times 16$ = 100(1) $Amount = \underline{m} = \underline{0.680}$ 100 M = 0.0068(1) (2 marks) Volume of CO, $= 24 \times 0.0068$ (1) (iii) $= 0.16(32) \, dm^3$ (2 marks) (iv) (Excess) wind/burping/flatulence/chalky taste (1 mark) (b) (i) Nichrome/platinum wire/silica rods (1) **Concentrated** hydrochloric acid (1) Wire dipped in acid, then crushed/powder(ed) tablet/salt or paste, then into (roaring) (Bunsen) flame (1) (3 marks) (ii) (brick/orange) red (1 mark) (iii) Magnesium does not emit light/radiation in the visible ACCEPT'gives no colour to the flame' (1 mark) **Total 12 marks**


7.

Unit Test 1 6251/01

Ca(s) + 2H₂O(l) → Ca(OH)₂(aq)/(s) + H₂(g)
 All formulae correct (1)
 Balancing and all state symbols (1)

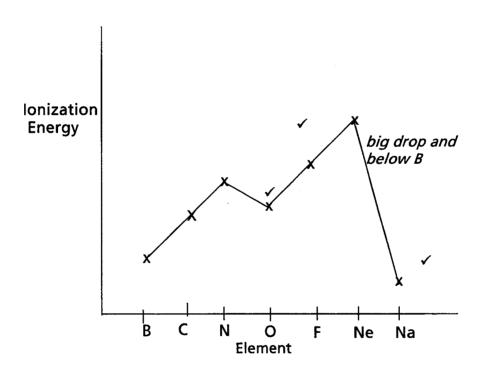
2 marks

2. (a)

ALLOW e(-) for electrons. Cations must not touch.

(Equal number of) regularly arranged positive charges and (randomly) arranged electrons.

(1 mark)


(b) Mark independently from (a)
"Electrons/are mobile/ free to move"

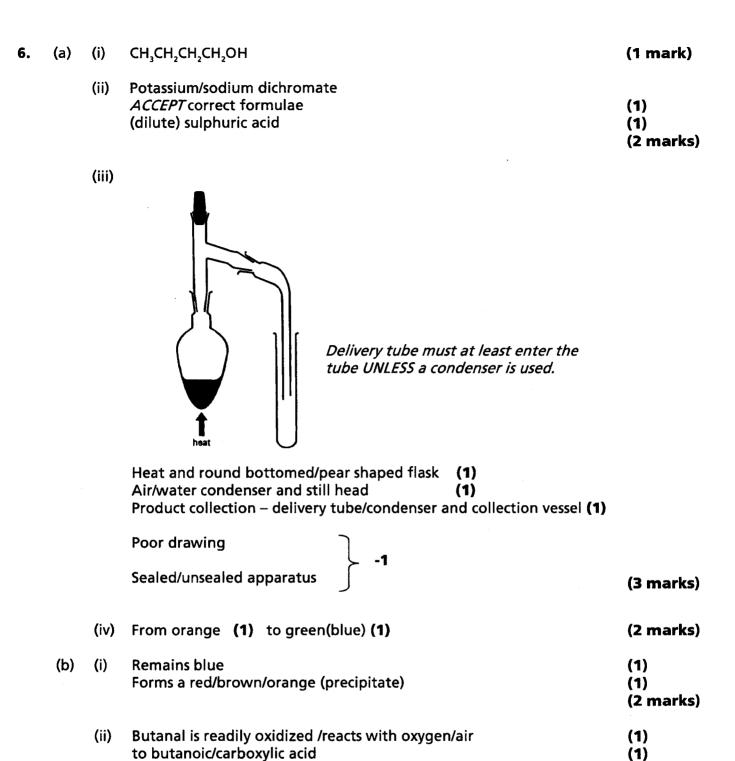
(1 mark)

3. (a) $1s^22s^22p^2$

(1 mark)

(b)

1" mark for O between C and N


2nd mark for F, Ne in straight line with O.

3rd mark for Na below B

(3 marks)

4.	(a)		An acid which is partly ionized/dissociated. ACCEPT "Not fully dissociated/ionised".	
	(b)	(i)	Conductivity/pH meter	(1 mark)
		(ii)	Low conductivity ALLOW pH in range 3-6 / yellow/orange	
			Result must relate to test in (i).	(1 mark)
			TOTAL FOR SECTION	ON A: 11 MARKS
5.	(a)	(i)	molar mass = (0.973x115) + (0.0269 x 113)	
			= 114.9 g mol ⁻¹	
			Method (1) Answer with units and Sig. Figs. (1)	(2 marks)
		(ii)	Mass spectrometer	(1 mark)
	(b)	(i)	$2\ln(s) + 3H_2SO_4(aq) \rightarrow \ln_2(SO_4)_3 (aq) + 3H_2(g)$	
			Formulae (1) Balancing and all state symbols (1)	(2 marks)
		(ii)	Boil/heat to remove excess water/reduce the volume/concentrate the solution Cool/leave/allow water to evaporate/to crystallise. Filter/decant/pick out crystals Dry between (filter) papers/in a dessicator.	(1) (1) (1) (1)
				(4 marks)
	(c)	66 r	protons neutrons electrons	(1) (1) (1) (3 marks)

Total 12 marks

(2 marks) Total 12 marks (a) (i) Fe(s) + $Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$ Formulae(1) State symbols (1) (2 marks) (ii) Fe(s) + $Cu^{2+}(aq)$ ($CuSO_4(aq)$) Fe $^{2+}$ (aq) (FeSO₄(aq))+ Cu(s) $Fe(s) + Cu(s) (+ S(s) + 2O_3(g))$ **Entities** (1) (1) Arrows Hess applied $\Delta H_{\ell}^{\Theta} = \Delta H_{\ell}^{\Theta}$ [Fe²⁺(aq)] - ΔH_{ℓ}^{Θ} [Cu²⁺(aq)] (1) (3 marks) (b) (i) Polystyrene/plastic cup (1 mark) (ii) $(0.01 \times 56 =) 0.56 (q)$ (1 mark) $(25 \times 0.2) = 5 \times 10^{-3}$ (iii) (1 mark) (iv) $153.9 \times 1000 \times 5 \times 10^{3} = 769.5/770 \text{ J} / 0.7695/0.77 \text{ kJ}$ (1 mark) (v) As enthalpy change is negative, heat is given out. (1 mark) (vi) Temperature change = _ 769.5 = (+)7.4/7.36 °C/K4.18 x 25 Value (1)Sign and unit °C or K and "+" (2 marks) /F-7.4 °C /K 1 max (vii) Heat losses to the surroundings/Mass of chemicals/heat capacity of solution not allowed for. Any reasonable point NOT heat loss to calorimeter (1 mark)

8.

TOTAL FOR SECTION B: 49 MARKS

(a) (i) Fe(s) + $Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$ Formulae(1) State symbols (1) (2 marks) (ii) Fe²⁺(aq) (FeSO₄(aq))+ Cu(s) Fe(s) + $Cu^{2+}(aq)$ (CuSO₂(aq)) $Fe(s) + Cu(s) (+ S(s) + 2O_3(g))$ **Entities** (1) Arrows (1) Hess applied $\Delta H_{\ell}^{\Theta} = \Delta H_{\ell}^{\Theta}$ [Fe²⁺(aq)] - ΔH_{ℓ}^{Θ} [Cu²⁺(aq)] (1) (3 marks) (b) (i) Polystyrene/plastic cup (1 mark) (ii) $(0.01 \times 56 =) 0.56 (q)$ (1 mark) (iii) $(25 \times 0.2 \neq 5 \times 10^{-3})$ (1 mark) (iv) 153.9 x 1000 x 5 x 10^{-3} = 769.5/770 J / 0.7695/0.77 kJ (1 mark) (v) As enthalpy change is negative, heat is given out. (1 mark) (vi) Temperature change = $769.5 = (+)7.4/7.36 \, ^{\circ}\text{C/K}$ 4.18 x 25 Value (1) Sign and unit °C or K and "+" (2 marks) /F-7.4 °C /K 1 max (vii) Heat losses to the surroundings/Mass of chemicals/heat capacity of solution not allowed for. Any reasonable point **NOT** heat loss to calorimeter (1 mark)

8.

TOTAL FOR SECTION B: 49 MARKS