<u>June 2001 Unit 2</u>

1)a)

Left hand apparatus (1) ACCEPT conical flask, if bung is missing lose mark Gas collection/good drawing(1) Delivery tube must be in test-tube ACCEPT Syringe Collected over water(0) Totally closed(0)

b) i) White fumes/gas/clouds/smoke/solid/vapour

ii) NH_3 + $HBr \square NH_4Br/NH_4^+Br^-$

- c) Yellow/red/brown/orange/ vapour/gas/fumes/liquid
- d) i) C_6H_{10} + HBr \Box $C_6H_{10}Br$ (1) (1)

ii) Cyclohexene/liquid/rises/sucked up the tube

- e) i) Chlorine/Cl₂ Sodium chloride/NaCl Silver chloride/AgCl ACCEPT name or formula
 - ii) $Ag^{+}(aq) + CI^{-}(aq) \Box AgCI(s)$

Entities (Ag⁺ , Cl⁻, AgCl) States – only award if the entities are correct

iii) Precipitate darkens OR colour changes to silver/grey/purple/green/blue/violet/lilac/black

www.latifsnotes.co.nr

2)a) i)H₂O(g) \Box 2H(g) + O(g)

ii) (+) 464 (KJ mol⁻)

b) i) Dative (covalent)

- iii) The bond angle (107°) is greater as there is only one non-bonding pair of electrons/two bonding pairs in water
- 3)a) i) Hydrogen (bonds)

Different bonds between O and H 180° with poor diagram is acceptable OR O ... H-O in straight line

iii) Van der Waals

Instantaneous/flickering dipole/induced dipole Forces/oscillating dipoles OR (permanent) dipole-dipole (forces) Polar C-Br bond/opposite charges on C-Br/Br is more electronegative

iv) Van der Waals forces in 1-bromobutane/hydrogen bonds in water are **too** strong/no strong interaction between water and 1-bromobutane

www.latifsnotes.co.nr

OR discussion of energy charges OR reasonable alternative

b) i) Ethanol/heat/reflux

ii) $C_4H_9Br + H_2O \square C_4H_9OH/C_4H_{10}O + HBr/H^+ + Br^-$

- iii) Nucleophile
- iv) Substitution/Hydrolysis
- 4)a) i) Provides alternative routesWith lower activation energy.Provides surface for the reaction
 - ii) Decreases/increases amount/yield C₁₂H₂₆ Increases/increase amount/yield C₄H₈/C₈H₁₈
- b) i) CH₃CH₂CHCH₃ OR CH₃-CH₂-CH=CH₂

Trans but-2-ene (correct name for isomer) OR cis isomer

- c) i) C_2H_4 + H_2SO_4 \Box $CH_3CH_2OSO_3H/C_2H_6SO_4$
 - ii) H⁺/ hydrogen ion/H⁺(aq)/proton
 - iii) Alcohols/surfactants/detergents
- d) i) +2
 - ii) -2

ii)

- -1
- iii) Look for transfer of ten electrons/change of ten units of oxidation number
- 5)a) To condense (alternatives possible, must be clear eg cool) (1 mark)

The spirit/whisky/vapour.

b)	He showed that the temperature did not change when a liquid boiled or evaporated but heat was needed for the change/experiment/reaction to take place	(1) (1) (2 marks)
C)	Fixed air.	(1 mark)
d)	Both are carbonates. OR both give off the same gas / carbon dioxide when Heated/reacted with acids	(1 mark)
e)	$\begin{array}{c} CO_2(g) + Ca(OH)_2(aq) \Box CaCO_3 + H_2O(I) \\ (1) \qquad \qquad (1) \end{array}$	(2 marks)

f) Key Points

- 1. He found that the same gas (can be implied)/carbon dioxide, was given off when **magnesia or chalk/2 of the group 2 carbonates** were added to acid
- 2. and when magnesia or chalk were heated/thermally decomposed
- This gas combined with limewater/calcium hydroxide solution to form chalk.
 NB: Limewater going milky is **not** acceptable
- 4. He heated a (known) mass (can be implied) of chalk to form quicklime.

Slaked lime(formed by the addition of water to quicklime)reacted with '**fixed air**' to form (the starting mass/weight of) **chalk**(after driving off the water) MUST make chemical sense!

'Fixed air' behaved as an acid neutralizing/reacting with an **alkali/sodium hydroxide/potassium hydroxide**

It was formed when charcoal was reacted with/heated in air/burned

And in experiments when animals respire/breathe (out).