MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 41 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9701	41
1	CO	2: S	gas (at room temperature); SiO ₂ is a high melting solic imple / discrete molecular / covalent iant covalent <i>or</i> macromolecular / giant molecular	1	[1] [1] [1] [3]
			ance that is) hard, high melting, electrical insulator s strong covalent bonds (can be in (a))	any two	[1] [1] [2]
	(c) (i)	amp	hoteric		[1]
	(ii)		$OH + PbO \longrightarrow Na_2PbO_2 + H_2O$		[1]
		(Or r	$AaOH + PbO + H_2O \longrightarrow NaPb(OH)_3 etc.)$		[2]
	(d) (i)	Zn ·	+ $\operatorname{Sn}^{4+} \longrightarrow \operatorname{Zn}^{2+} + \operatorname{Sn}^{2+}$		[1]
	(ii)	Ε ^θ = Ε ^θ =	= 0.15 - (-0.76) = 0.91 V = 1.52 - 0.15 = 1.37 V		[1] [1]
	(iii)	n(Sr	n^{2^+}) = 0.02 × 13.5/1000 × 5/2 = 6.75 × 10 ⁻⁴ mol	use of the 5/2	
		n(Sr	n^{2^+}) = 0.02 × 20.3/1000 × 5/2 = 1.02 × 10 ⁻³ mol	correct rest of	working [1] [1]
	(iv)	``	n^{4+}) = 1.02 × 10 ⁻³ - 6.75 × 10 ⁻⁴ = 3.45 × 10 ⁻⁴ mol		[1]
			atio = $6.75/3.45 = 1.96:1 \approx 2:1$ ormula is 2SnO + SnO ₂ \Rightarrow Sn ₃ O ₄ (cond ¹ on calc	culation, but allo	w ecf) [1] [8]
	(e) (i)	volu	me = $1 \times 1 \times 1 \times 10^{-5} = 1 \times 10^{-5} \text{ m}^3 \text{ or } 10 \text{ cm}^3$		[1]
	(ii)		s = vol × density = 10 × 7.3 = 73 g es = mass/A _r = 73/119 = 0.61 mol		ecf [1] ecf [1]
	(iii)	Q =	nFz = 0.61 × 9.65 × 10 ⁴ × 2 = 1.18 (1.2) × 10⁵ coul	ombs	ecf [1] [4]

[Total: 19]

© UCLES 2009

	Page	3			chers' version		Syllabus		per
		2.	•		ber/Novembei	r 2009	9701	4	1
2	(a) Ca ² (g)		+ 2Cl⁻(g) ——	→ CaCl ₂ (s)					[1] [1]
	(b) Ca		d CaS both have	-	energies (than	n CaCl ₂)			[1]
	(i)		smaller than Cl						[1]
	(ii)	S²− i	s more highly ch	arged than Cl	-				[1] [3]
	(c) LE	= -[[178 + 590 + 115	50] – [244 – 2	× 349] – 796	signs√			
		= -:	2260 (kJ mol ^{−1})	·		SIGHS			[3] [3]
	(d) (i)	Ca C H O	= 28.2/40.1 = 25.2/12 = 1.4/1 = 45.1/16	= 0.703 = 2.10 = 1.4 = 2.82	$\begin{array}{ccc} \Rightarrow & 1 \\ \Rightarrow & 3 \\ \Rightarrow & 2 \\ \Rightarrow & 4 \end{array}$	(1 mark	for initial ste	ep of calc'n)
			formula is Ca	$C_3H_2O_4$		(1)			[2]
	(ii)	malo	onic acid must be	e C ₂ H ₄ O ₄ , i.e.	CH ₃ (CO ₂ H) ₂	(must b	e structural)		[1] [3]
								[To	tal: 10]
3	ligi ele co	ht is al ectron	s split into two / o bsorbed is promoted fron oserved is the co	n a lower to a	higher level	orbed	an	ny 3 points	[3] [3]
	(b) (i)	[Cu([Cu($\left[{{H_2}O}_{6} ight]^{2 + }$ is pale to $\left[{{NH_3}} ight]_4 \left({{H_2}O}_{2} ight]^{2 + }$ is	olue s deep / dark l	blue <i>or</i> purple				[1] [1]
	(ii)		ause it has a largause λ_{max} is in th			-		ed)	[1] [1]
	(iii)		e will have λ_{max} l maximum ϵ_{o} in b			m			[1] [1] [6]
	(c) (i)	K _c =	[CuCl4 ²⁻]/([Cu ²⁺]	[[Cl [−]] ⁴)	units a	re mol ⁻⁴ d	lm ¹²		[1] + [1]
	(ii)	[CuC	$CI_4^{2-}]/[Cu^{2+}] = K$	$c_{\rm c}[{\rm Cl}^-]^4 = 672$	(no units)				[1]
								IT~	[3] tal: 12]
								[10	(al. 12]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9701	41
4	(a)	(cyclohe: due to O	xanol & phenol) hydrogen bonding to (solvent) water n H group	nolecules	[1] [1] [2]
	(b)	•	de anion is more stable (than cyclohexoxide) / OH bone elocalisation of charge / lone pair over the ring	d is weaker	[1] [1] [2]

(c)			
	reagent	product with cyclohexanol	product with phenol
	Na(s)	RONa <i>or</i> RO⁻Na⁺	ArONa <i>or</i> ArO⁻Na⁺
	NaOH(aq)	no reaction	ArONa <i>or</i> ArO⁻Na⁺
	Br ₂ (aq)	no reaction	tribromophenol
	I₂(aq) + OH⁻(aq)	no reaction	no reaction
	an excess of acidified $Cr_2O_7^{2-}(aq)$	cyclohexanone	no reaction

five correct products 5 × [1] [2]

five correct "no reaction"s (4 correct = [1]; 3 correct = [0])

[7]

(d) either Br₂(aq): no reaction with cyclohexanol; decolourises or white ppt with phenol

 $Cr_2O_7^{2-} + H^+$: turns from orange to green with cyclohexanol; no reaction with phenol or

- correct reagent chosen and the correct "no reaction" specified [1]
 - [1] correct positive observation
 - [2]

[Total: 13]

© UCLES 2009

	Page 5		5	Mark Schen	ne: To	eachers' version		Syllabus	Paper
				GCE A/AS LEVEL	_ – Oc	ctober/November 2	009	9701	41
5	(a)	(i)		KMnO ₄ heat with H ⁺ or OH [−] SOCl ₂ or PCl ₅ or PCl ₃	3	(NOT aq)			[1] [1] [1]
		(ii)	-[-C(O-C ₆ H ₄ -CO-NH-C ₆ H ₄ -I	NH-]-	(Peptide bond mu	st be d	isplayed for minr	m) [1] [4]
	(b)	(i)	CH₃	NHCO-C ₆ H ₄ -CONHCł	H ₃	(1 mark for each en	nd)		[1] + [1]
		(ii)		CH ₂ CH ₂ O-CO-C ₆ H ₄ -C0 the polymer -[- OCH ₂ 0					for [1] for [2] [4 max 3]
	(c)	(i)	Cl⁻ ⁺	[™] NH ₃ -C ₆ H ₄ -NH ₃ ⁺ Cl ⁻	(1 n	nark for each end)			[1] + [1]
		(ii)	H ₂ N	$-C_6H_2Br_2-NH_2 \text{ or } H_2N-0$	C ₆ H ₂ E	Br ₃ -NH ₂ or H ₂ N-C ₆ Br ₄	₄ -NH ₂		[1] [3]
	(d)	I:		D₂ (<i>or</i> NaNO₂ + HCI/H₂ <10ºC	₂ SO ₄)				[1] [1]
		II:	•	rop-2-yl phenol, (CH _{3):} aOH(aq)	₂CH-0	C ₆ H₄OH			[1] [1] [4]
	(e)	(i)	A sp	becies having positive	and n	egative ionic centre	s / char	rges, with no ove	erall charge [1]
		(ii)	-O ₂ 0	$C-C_6H_4-NH_3^+$					[1] [2]
									[Total: 16]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Pa	ber
			GCE A/AS LEVEL – October/November 2009	9701	4	1
6 (Τ	⊺wo an	e amino acids correctly paired nino acids correctly paired pelled H-bond between strands		(2) (1) (1)	[3]
((b) (- (NA – each amino acid has its own specific / appropriate carry amino acids to ribosomes / mRNA contains a triplet code / anticodon	tRNA	(1) (1) (1)	
	(i		osome – attaches / moves along / binds to mRNA ssemble amino acids in correct sequence for / synthesis	ses protein	(1) (1)	[5]
((c) (i) Ba	se miscopied / deleted		(1)	
	(i	. Th	quence of bases is changed is may result in different amino acid sequence – differen n affect shape / tertiary structure of protein	t protein	(1) (1) (1)	[Max 3]
				[Τα	otal: 12 m	nax 11]

	Page 7		,	Mark Scheme: Teachers' version	Syllabus	Pape	r
				GCE A/AS LEVEL – October/November 2009	9701	41	
7	(a)	(i)	Posi	tions of atomic nuclei / atoms		(1)	
	((ii)	Insu	fficient electrons / electron density / electron cloud (arc	ound H atom)	(1)	[2]
	• •		• •	estallography can show the geometry of the arrangeme between atoms / shape of atoms	ent of atoms /	(1)	
		Thi	s can	help explain how e.g. enzymes work (any reasonable	example)	(1)	[2]
	(c)	(i)	Nucl	lear spin		(1)	
	((ii)	(If M	: M+1 gives a ratio 15 : 2)			
			Ther	$hx = \frac{100 \times 2}{1.1 \times 25} = 7$		(1)	
			Sing	le peak at 3.7 δ due to –O-CH $_3$		(1)	
			Sing	le peak at 5.6 δ due to phenol / OH		(1)	
			1,2,7	1 peak at 6.8 δ due to hydrogens on benzene ring		(1)	
			Patte	ern suggests 1,4 subsitution		(1)	
			(x =	7,) y = 8, z = 2		(1)	
			Com	pound is 4-methoxylphenol		(1) Max 5	[6]
						[Tota	l: 10]

	Pa	Page 8		Mark Scheme: Teachers' version	Syllabus		Paper
				GCE A/AS LEVEL – October/November 2009	9701		41
8	(a)	Gra	aphite	/ graphene		(1)	
	(b)	The	ey do	not exist as sheets / layers of carbon atoms		(1)	
	(c)		•	ths of nanotubes are much shorter than the curvature so small that they are not effected by rolling	of the paper /	(1)	
	(d)	Any	y molt	en ionic salt (or plausible organic ionic compounds)		(1)	[Total: 4]
9	(a)	(i)	Cov	alent / co-ordinate		(1)	
		(ii)	Мес	hlorethamine – binds the two chains together – prevents unravelling		(1) (1)	
			Cis-	platin – binds to two Gs / bases in one chain – so they are not available for base pairing		(1) (1)	
							[Total: 5]