
UNIT <i>G</i> 481	Module 1	1.1.4	Linear Motion	DERIVING THE EQUATIONS OF MOTION	1
 Dessta Seact <i>v</i> = <i>u</i> Apina <i>gr</i> Ex 		<pre>/-time grap /-time grap //s of motion //s of motion /</pre>	wh. $\frac{1}{2}at^2$ $v^2 = u^2 + 2as$ eleration in a straight line, g in the Earth's uniform brance.	Consider an object moving with an initial velocity (u) which accelerates with a constant acceleration (a) to reach a final velocity (v) after a time (t). The distance moved in this time is (s). This is the velocity-time graph for the motion. Velocity ut $U=Velocity$ ut $U=Velocity$ ut $U=Velocity$ ut ut $U=Velocity$ ut ut ut	v - u = at
	escribe an experiment to o I I (g) using a falling body		the acceleration of free	at = v - u $v = u + at$	
ex on	oply the equations of cons plain the motion of an obj ne direction and a consta rection .	ject due to		EQUATION 2 Total displacement = average velocity x time $s = \frac{1}{2}(u + v)t$	
				02	2008 FXA

UNIT 6481Module 11.1.4Linear Motion
$$\mathcal{E}_{QUATIONS OF MOTION - SUMMARY}$$
2 $\mathcal{E}_{QUATION 3}$ $v = u + at \dots(1)$ and $s = (u + y) t \dots(2)$
 2 $v = u + at \dots(2)$
 2 $v =$

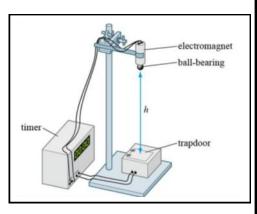
 $u = 20 \text{ m s}^{-1}$

3

- uniformly for 20 s to reach a constant velocity of 50 m s^{-1} .
 - (a) The *distance travelled* by car A during the first 20 s.
 - (b) Car B's acceleration during the first 20 s.
 - (c) The *distance travelled* by car *B* during the first *20 s*.
 - (d) The *additional time* taken for car **B** to catch up with
 - (e) The *total distance* each car will have

© 2008 FXA

UNIT G48	1 Module 1	1.1.4	Linear Motion	• <i>NO</i> 1	TE ON NON-UNIFORM ACCELERATION 4		
 8 A coin is dropped down a mine shaft and falls through a height of 55 m before hitting the bottom of the shaft. Assuming negligible air resistance and taking the acceleration due to gravity (g) as 9.81 m s⁻², calculate : (a) The time taken for the coin to hit the bottom. (b) The velocity of the coin on impact. 			 The <u>EQUATIONS OF MOTION</u> only apply to objects moving with <u>CONSTANT or UNIFORM ACCELERATION</u>. The v/t graph opposite shows the motion of an object which is moving with <u>non-uniform</u> <u>acceleration.</u> 				
initial	ne is projected vertically upv velocity of <i>30 m s⁻¹.</i> Assu aking the <i>acceleration due t</i> ate : (a) The <i>maximum height</i> red (b) The <i>total time taken</i> to	ming <i>air</i> <i>o gravity</i> ached by	resistance is negligible (g) as 9.81 m s ⁻² , the stone.		The <u>acceleration at any time</u> is given by the <u>gradient of</u> <u>the v/t graph</u> at that time. To find the acceleration at Any given time : At the time in question, mark a point on the v/t graph. Draw a tangent to the curve at that point. Construct a large right-angled triangle and use it to calculate the gradient.		
veloci trave for a (a) D a ve (b) Us th ve (c) Us	iagram opposite shows a ty-time graph for a vehicle ling along a straight road time of <i>30 s.</i> escribe the motion of the hicle. Se the graph to determine e <i>acceleration</i> of the hicle over the <i>30 s period.</i> Se the graph to determine th e <i>30 s period.</i>	v/m s ⁻¹ 20 16 12 8 4 0 0	10 20 30 t/s		Use the procedure outlined above to calculate the acceleration at Point P in the v/t graph shown below.		
	leck your answer to part (c) l ing a suitable equation of mo		ting the <i>displacement</i>		Acceleration = = ms ²		

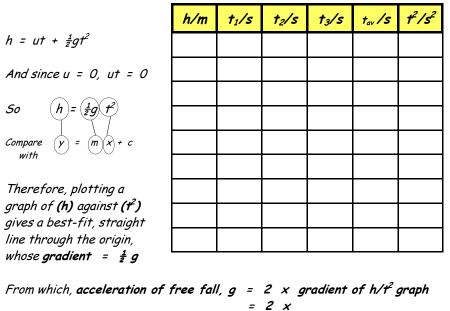

UN	IIT G481	Module 1	1.1.4	Linear Motion				
•		ALILEO'S EXPERIMENTS DTLE'S IDEAS OF MOTIO		NED				
•	to keep c for exam does this	n object moving. Our own expe ple, will slow down and eventual	rience seems ly stop when rce has been	force must act all the time in order to support this idea in that a car, the engine is switched off. But, switched off? The reality is that is an opposing FRICTIONAL				
•		ents carried out by GALILEO (a force is not needed to maint Start and stop motion,		ears after Aristotle) showed that but force is needed to :				
	 Change the speed of an object, Change the direction of an object. 							
•	<u>GALILEC</u>	D'S EXPERIMENTS						
	t. H	he leaning Tower of Pisa and f	found that the	f different weight from the top of ey hit the ground at the same time. at the same rate, regardless of				
	n e	qual distances down a slope fro	'e to measure m rest. His r	the time taken by a ball to travel				

greater is the acceleration. From this, he concluded that an object falling

vertically will accelerate.

DETERMINATION OF THE ACCELERATION OF FREE FALL (g) 5

A steel ball-bearing is held by an electromagnet. When the current to the magnet is switched off, the ball is released and the timer is started. The ball strikes and opens a trapdoor which then stops the timer. The time taken (t) for the ball to fall through a given height (h) is recorded. The timing is repeated and an average t-value is calculated.

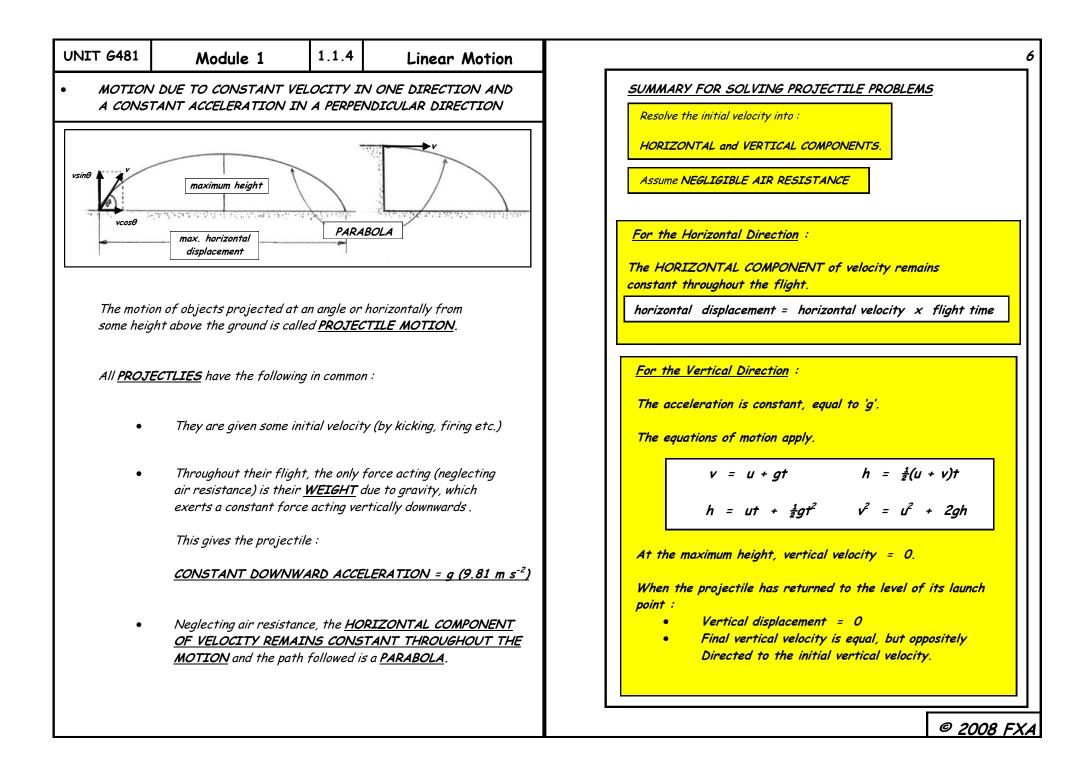


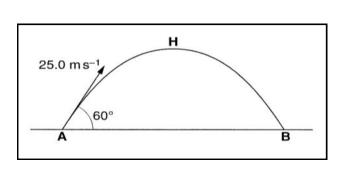
The procedure is repeated for several different h-values and the results are recorded in the table below :

 $h = ut + \frac{1}{2}gt^2$ And since u = 0, ut = 0

So
$$h = \frac{1}{2}gt^{2}$$

Compare $y = mx + d$
with


Therefore, plotting a graph of (h) against (t²) gives a best-fit, straight line through the origin, whose gradient = $\frac{1}{2}g$

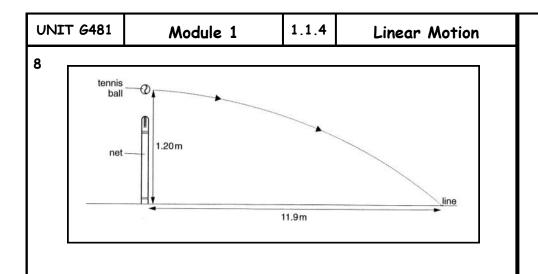

=

m s⁻²

© 2008 FX/

UNIT 6481		Module 1	1.1.4	Linear Motion	3			
•	 Practice Questions (2) 							
1	A helicopter is flying in a straight line at a speed of 20 m s⁻¹ and at a constant height of 180 m . A small object is released from the helicopter and falls to the ground. Assuming air resistance is negligible, calculate :							
	(a) The <i>time taken</i> for the object to reach the ground.							
	(b) The <i>vertical component of velocity</i> of the object when it hits the ground.							
	(c)	(c) The <i>horizontal component of velocity</i> of the object when it hits the ground.						
	(d)	(d) The <i>horizontal displacement</i> of the object in the time taken to reach the ground.						
2	During a European Champions League match, a free kick was taken by Steven Gerrard and the ball was projected with a velocity of 20 m s⁻¹ at an angle of 35° to the pitch. Assuming that air resistance is negligible, calculate :							
	(a) The <i>initial vertical and horizontal components of velocity</i> .							
	(b)) The <i>time taken</i> for the	ball to re	each its maximum height.				
	(c) The <i>maximum height</i> reached by the ball.							
	(d) The <i>horizontal displacement</i> of the ball in the time taken to return to the ground.							

7


The diagram above shows the path of a ball that is thrown from **point** A to **point** B. The ball reaches its maximum height at **point** H. The ball is thrown with an initial velocity of 25.0 m s⁻¹ at 60° to horizontal. Assume that there is no air resistance.

- (a) (i) Show that the vertical component of the initial velocity is 21.7 m s^{-1} .
 - (ii) Calculate the *time taken* for the ball to reach *point H*.
 - (iii) Calculate the *displacement* from *A* to *B*.
- (b) For the path of the ball shown in the diagram, draw sketch graphs, with labelled axes but without numerical values, to show the variation of :
 - (i) The vertical component of the ball's velocity against time.
 - (ii) The *distance travelled along its path* against *time*.

(OCR Physics AS - Module 2821 - May 2008)

© 2008 FX

UNI	LT 6481	Module 1	1.1.4	Linear Motion	5	Traffic police investigators use the length of skid marks left on the $ {m 8}$	
•	HOMEWORK QUESTIONS					road by a decelerating vehicle in order to determine whether or not the speed limit has been exceeded.	
1 When the brakes are applied in a car which is moving at 40 m s ⁻¹ , the velocity is reduced to 25 m s ⁻¹ over a distance of 140 m. If the deceleration remains constant, what <i>further distance</i> will the car travel before coming to rest?			If the skid marks at the scene of an accident are $52m$ long and other tests on the road surface show that the skidding car was decelerating at 6.5 m s ⁻² , was the car breaking the speed limit of 30 m s ⁻¹ ?				
	Sketch a <i>velocity-time</i> graph for the whole motion showing numerical values on the axes.		6	6 A sandbag is dropped from a height of <i>180 m</i> , from a helicopter that			
2		the deceleration of a b ought <i>to rest</i> after tr		r travelling at 400 m s⁻¹, m through a wooden		is moving vertically upwards with a velocity of 6 m s⁻¹. If air resistance is neglected, calculate : (a) The <i>initial velocity</i> of the sandbag.	
3	A hawk is hovering above a field at a height of 50 m . It sees a Mouse directly below it and dives vertically with an acceleration of 12 m s ⁻² . Calculate :					(b) The <i>final velocity</i> of the sandbag. (c) The <i>time taken</i> for the sandbag to reach the ground.	
	(a)	The hawk's <i>velocity</i> at	the instant i	t reaches the mouse.			
	(b)	(b) The <i>time taken</i> to reach the mouse.			7	An aid parcel is released from a plane flying horizontally at 65 m s^{-1} , at a height of 800 m above the ground.	
4		A train accelerates steadily from <i>4.0 m s⁻¹</i> to <i>24.0 m s⁻¹</i> in a time f <i>180 s.</i> Calculate :				(a) Calculate the <i>horizontal</i> and <i>vertical</i> components of the parcel's <i>initial velocity</i> .	
	(a) The train's <i>acceleration</i> .				(b) How long does it take for the parcel to reach the ground ?		
	(b) The <i>average velocity</i> of the train.					(c) At what <i>horizontal distance</i> from the target should the plane be when the parcel is released ?	
	(c)	The <i>distance travelled</i>	/ by the train	during the acceleration.			
						© 2008 FXA	

The diagram above shows the path of a tennis ball after passing over the net.

As it passes over the net, it is travelling at a height of 1.20 m. The ball strikes the ground on a line which is 11.9 m from the net.

(a) Assuming air resistance to be negligible,

(i) Show that the *time taken* for the ball to reach the line After passing over the net is *0.495 s*.

(ii) At the instant the ball strikes the line, calculate :

1. The horizontal component of its velocity.

2. The vertical component of its velocity.

(OCR Physics AS - Module 2821 - June 2007)

© 2008 FXA

9