

# OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

**PHYSICS A** 

2823/01

**Wave Properties** 

Thursday

**16 JANUARY 2003** 

Afternoon

45 minutes

Candidates answer on the question paper.
Additional materials:
Electronic calculator

| Candidate Name | Centre Number | Candidate<br>Number |  |  |
|----------------|---------------|---------------------|--|--|
|                |               |                     |  |  |

TIME 45 minutes

# **INSTRUCTIONS TO CANDIDATES**

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

# INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

| FOR EXAMINER'S USE |      |      |  |  |
|--------------------|------|------|--|--|
| Qu.                | Max. | Mark |  |  |
| 1                  | 12   |      |  |  |
| 2                  | 14   |      |  |  |
| 3                  | 12   |      |  |  |
| 4                  | 7    |      |  |  |
| TOTAL              | 45   |      |  |  |

#### Data

speed of light in free space,  $c = 3.00 \times 10^8 \text{ m s}^{-1}$  permeability of free space,  $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$  permittivity of free space,  $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$  elementary charge,  $e = 1.60 \times 10^{-19} \text{ C}$  the Planck constant,  $h = 6.63 \times 10^{-34} \text{ J s}$ 

unified atomic mass constant,  $u = 1.66 \times 10^{-27} \, \mathrm{kg}$  rest mass of electron,  $m_{\mathrm{e}} = 9.11 \times 10^{-31} \, \mathrm{kg}$ 

rest mass of proton,  $m_{\rm p} = 1.67 \times 10^{-27} \, \rm kg$  molar gas constant,  $R = 8.31 \, \rm J \, K^{-1} \, mol^{-1}$ 

the Avogadro constant,  $N_A = 6.02 \times 10^{23} \, \text{mol}^{-1}$ 

gravitational constant,  $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ 

acceleration of free fall,  $g = 9.81 \text{ m s}^{-2}$ 

# **Formulae**

capacitor discharge,

uniformly accelerated motion, 
$$s = ut + \frac{1}{2}at^2$$
 
$$v^2 = u^2 + 2as$$
 refractive index, 
$$n = \frac{1}{\sin C}$$
 capacitors in series, 
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$
 capacitors in parallel, 
$$C = C_1 + C_2 + \dots$$

capacitor discharge, 
$$x = x_0 \mathrm{e}^{-t/CR}$$
 pressure of an ideal gas, 
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay, 
$$x = x_0 \, \mathrm{e}^{-\lambda t}$$
 
$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

 $\rho_0 = \frac{3H_0^2}{8\pi G}$ critical density of matter in the Universe,

relativity factor, 
$$= \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$$

current, 
$$I = nAve$$

nuclear radius, 
$$r = r_0 A^{1/3}$$

sound intensity level, 
$$= 10 \lg \left(\frac{I}{I_0}\right)$$

# Answer all the questions.

| 1 | (a) | Define the refractive index for light passing from air into glass. Identify any symbols you use. |
|---|-----|--------------------------------------------------------------------------------------------------|
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     | [2]                                                                                              |
|   | (b) | A block of glass has a refractive index of 1.54.                                                 |
|   |     | (i) Determine the speed of light in the glass block.                                             |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     | speed of light = m s <sup>-1</sup> [2]                                                           |
|   |     | (ii) Calculate the critical angle for the glass/air interface.                                   |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     | ° [O]                                                                                            |
|   |     | critical angle = [2]                                                                             |
|   |     |                                                                                                  |

(c) Fig. 1.1 shows a ray of light passing from air into a rectangular glass block of refractive index 1.54.



Fig. 1.1

(i) The angle of refraction in the glass is 30°. Calculate the angle of incidence, in the air, at the point P.

angle of incidence at P = ..........° [3]

(ii) Determine the angle of incidence of the ray in the glass at the point Q.

angle of incidence at Q = ...... [1]

(iii) On Fig. 1.1, sketch the path followed by the ray when it leaves Q. Explain your sketch.

[Total: 12]

| 2                               | (a)            | longitudinal |                                                                                                                            |  |  |  |
|---------------------------------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 |                |              |                                                                                                                            |  |  |  |
|                                 |                |              | sverse[2]                                                                                                                  |  |  |  |
|                                 | (b)            | De           | ne                                                                                                                         |  |  |  |
|                                 |                | (i)          | the frequency of a wave                                                                                                    |  |  |  |
|                                 |                |              | [1]                                                                                                                        |  |  |  |
|                                 |                | (ii)         | the period of a wave.                                                                                                      |  |  |  |
|                                 |                |              | [1]                                                                                                                        |  |  |  |
|                                 | (c)            |              | 2.1 shows the variation of displacement with position at a particular instant for a pressive sound wave travelling in air. |  |  |  |
|                                 |                |              | direction of wave                                                                                                          |  |  |  |
|                                 | 6              | -            |                                                                                                                            |  |  |  |
| Ε                               | 4              |              |                                                                                                                            |  |  |  |
| 10-5                            | 2              |              |                                                                                                                            |  |  |  |
| nent/                           | 0              |              | 0.2 0.4 0.6 0.8 1.0 1.2 position/m                                                                                         |  |  |  |
| displacement/10 <sup>-5</sup> m | -2             | Ĭ            | 0.2 0.4 0.6 0.8 1.0 1.2 position/m                                                                                         |  |  |  |
| disp                            | <del>-</del> 4 | _            |                                                                                                                            |  |  |  |
|                                 | -6             | _            | A B                                                                                                                        |  |  |  |
|                                 |                | •            |                                                                                                                            |  |  |  |
|                                 |                | 411          | Fig. 2.1                                                                                                                   |  |  |  |
|                                 |                | (i)          | State the amplitude of the sound wave shown in Fig. 2.1                                                                    |  |  |  |
|                                 |                |              | amplitude = m [1]                                                                                                          |  |  |  |
|                                 |                | (ii)         | Describe the motion of an air particle at position A as one full cycle of the wave passes.                                 |  |  |  |
|                                 |                |              |                                                                                                                            |  |  |  |
|                                 |                |              |                                                                                                                            |  |  |  |
|                                 |                |              |                                                                                                                            |  |  |  |
|                                 |                |              |                                                                                                                            |  |  |  |
|                                 |                |              | [3]                                                                                                                        |  |  |  |

| (iii) | State <b>one</b> way in which the motion of an air particle at position B is similar to, and <b>one</b> way in which it is different from, the motion of an air particle at A as the wave passes. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | similarity                                                                                                                                                                                        |
|       |                                                                                                                                                                                                   |
|       | difference                                                                                                                                                                                        |
|       | [2]                                                                                                                                                                                               |
| (iv)  | Use Fig. 2.1 to determine the wavelength of the sound wave.                                                                                                                                       |
|       |                                                                                                                                                                                                   |
|       | wavelength = m [1]                                                                                                                                                                                |
| (v)   | The speed of the sound wave is $340\mathrm{ms^{-1}}$ . Calculate the frequency of the sound.                                                                                                      |
|       |                                                                                                                                                                                                   |
|       | -                                                                                                                                                                                                 |
|       |                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                   |
|       | frequency = Hz [3]                                                                                                                                                                                |
|       | [Total: 14]                                                                                                                                                                                       |

**3 (a)** Fig. 3.1 shows a laboratory microwave transmitter T positioned directly opposite a microwave detector D which is connected to a meter.



Fig. 3.1

Initially the meter shows a maximum reading. When the detector is rotated through 90°, in a vertical plane as shown, the meter reading falls to zero.

| (i)   | Explain why the meter reading falls.                                                               |
|-------|----------------------------------------------------------------------------------------------------|
|       |                                                                                                    |
|       | [2]                                                                                                |
| (ii)  | Predict what would happen to the meter reading if the detector were rotated through a further 90°. |
|       | [1]                                                                                                |
| (iii) | State what the observations tell you about the nature of microwaves.                               |
|       | [1]                                                                                                |

(b) Fig. 3.2 is a plan view of the same arrangement shown in Fig. 3.1 with the addition of a metal plate **M** placed in front of the transmitter. The plate **M** contains a double slit.





Fig. 3.2

When the detector **D** is placed in the position shown, the meter reading is a maximum, but as it moves along the horizontal arc PQ the reading passes through a sequence of low and high readings at positions A and B respectively.

| (1)   | State the name of the phenomenon that accounts for this.                                                                                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|       | [1]                                                                                                                                           |
| (ii)  | Explain why the meter reading is a maximum when the detector is in the position shown (i.e. directly opposite the centre of the double slit). |
|       |                                                                                                                                               |
|       | [2]                                                                                                                                           |
| (iii) | Explain                                                                                                                                       |
|       | 1. why the meter reading is low at positions A                                                                                                |
|       |                                                                                                                                               |
|       | 2. why the meter reading is high at positions B.                                                                                              |
|       |                                                                                                                                               |
|       | [3]                                                                                                                                           |

| (10) | PQ changes when the separation between the slits in M is <b>reduced</b> . |
|------|---------------------------------------------------------------------------|
|      |                                                                           |
|      |                                                                           |
|      | [2]                                                                       |
|      | [Total: 12]                                                               |
|      | anding waves have nodes and antinodes. State what is meant by             |
| (i)  |                                                                           |
|      | [1]                                                                       |
| (ii) | an antinode.                                                              |
|      |                                                                           |
|      | [2]                                                                       |

[Total: 7]

| Using a labelled sketch to illustrate your answer, describe an experiment to demonstrate |
|------------------------------------------------------------------------------------------|
| how a standing wave can be produced in an air column.                                    |

In your answer

| • |  | state whether | the wave | is | transverse | or | Iongitudinal |
|---|--|---------------|----------|----|------------|----|--------------|
|---|--|---------------|----------|----|------------|----|--------------|

| •     | mark on your diagram the position of a node (label this N) and an antinode (lathis A). | ıbel |
|-------|----------------------------------------------------------------------------------------|------|
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
| ••••• |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        |      |
|       |                                                                                        | [4]  |