2821	Mark Scheme	January 2003	
1(a)(i)	pressure = force / area or force per unit area symbols need to be defined allow weight	B 1	
(ii)	force times distance <u>moved</u> / displacement in the direction of the force	M1 A1	
(iii)	power = work done or energy / time	B 1	
(b)(i)	force = pressure x area / 150 x 8 = 1200 (N)	C1 A1	
(ii)	power = F x v $= 1200 x 16 ecf$	C1 C1	
	= 19200 (W)	A1	
(iii)	(force greater as) air resistance is greater explanation of why: correct quantification, air resistance proportional to v or v^2 or in terms of molecules harder col	B1 lisions	
	or increased rate of collision	B 1	
	power greater as force is greater	B 1	
	power greater as velocity is greater	B1 MAX 3 TOTAL [12]	
2(a)(i)	point where the (whole) weight / mass of a body (appears to) act B1		
(ii)	sketch with point or pivot, force and distance labelled / cle symbols moment = force x perpendicular distance	ear B1 B1	
	(full definition can score two marks without a sketch provided the distance is from the pivot to the force)		
(b)(i)	$W = 5 \times 9.81 = 49 \text{ (N)}$ (allow g = 10)	A1	
(ii)	arrow acting down (labelled W) drawn approximately halfway from A to B A1		
(iii)	any correct moment F x $0.8 = 200 \times 0.25 + 49 \times 0.4$	C1 C1	
2(b)(iv)	F = 87 (N) upward force acts at the hinge	A1 B1	
	So F and force at hinge equals weight of table and compute (allow one mark for the upward forces equal the downward TOT)		

3 (a)
$$v_x = 42 \cos 36$$
 $= 34 (m s^{-1})$ A0

(b) time = 170 / 34 $= 5 (s)$ B1

(c)(i) $v_y = v \sin 36 / \cos 54$ C1

 $= 24.7 (allow 25)$ A1

(ii) $v^2 = u^2 + 2as$ / $s = ut + \frac{1}{2} at^2$ / $s = [(u + v)/2]t$ C1

 $0 = (24.7)^2 - 2 \times 9.81 \times s$ ecf from (c)(i) C1

 $s = 31.(1) (m)$ allow 31 to 32 as answer depends on sig figs and equation used A1

(d) k.e. = $\frac{1}{2} m v^2$ C1

 $= 0.5 \times 50 \times 10^{-3} \times (34)^2$ C1

 $= 28.9 (T)$ A1

(e)(i) height less range less B1

(ii) force acting against the motion and this effect on the acceleration / ball does work against air resistance / k.e. reduced due to air resistance / velocity is reduced by air resistance B1

TOTAL [13]

4 (a) the force that causes a mass of one kg to accelerate at 1 m s⁻² B1

(b)(i) acceleration = 13 / 20 or gradient attempted C1

 $= 0.65 (m s^{-2}) \pm 0.01$ A1

(ii) force = ma / 1200 x 0.65 ecf (b)(i) C1

 $= 780 (N)$ A1

4 (c)(i) (gradient is less hence) acceleration is less / reaches terminal velocity B1

(iii) resultant force is less / resistive forces are increasing / driver eases

off the accelerator / climbing a hill

B1

2821		Mark Scheme	January 2003	
5	(a)(i)	extension / original length or unit length	B 1	
	(ii)	force / (cross – sectional) area	B 1	
	(iii)	(tensile) stress / (tensile) strain	B 1	
	(b)	Pa / N m ⁻²	B 1	
	(c)	measurements: area / diameter, original length, force / mass and extensi	on B1	
		micrometer for the diameter (metre) rule for the original length masses used for the load / force = mass x g marker on the wire and mm scale / rule for extension	B1 B1 B1 [MAX 3]	
		length of wire greater than one metre stated repeating for a number of loads measure the diameter in several places measure the original length to the marker marker put nearer to pulley	B1 B1 B1 B1 [MAX 3]	
		allow one mark for good physics eg using a second wire as a reference or to compensate temperature changes / use a second wire with a microm to measure the extension / remove load to check extensi	eter scale	
calculations:		calculations:		
		plot a graph (eg force against extension of equivalent) determine the gradient E = (gradient x length) / area	B1 B1 B1	
		substituting values into the equation scores one out of three [TOTAL MAX 10]		
	QWC			
		Spelling, punctuation and grammar Organisation	B1 B1	
			TOTAL [16]	