1 **B**1 (a) Variable resistor \ rheostat To change (allow 'control') current \ ammeter reading \ (b) **B**1 resistance (of the circuit) \ brightness (of lamp) \ p.d. (across) lamp \ X **B**1 Correct direction indicated (clockwise) (c) **B**1 (d) Electrical to heat \ light [Total 4] 2 (a)(i) Value within the range 5.0×10^{-9} to 4×10^{-7} (m) **B**1 **B**1 (a)(ii) Cause cancer (Allow other sensible suggestions) B₁ Different wavelength \ frequency \ (photon) energy (b) (Allow 'emitted from different sources' or 'different penetrations' - with some detail) [Total 3] 3 resistance = p.d./current (Allow voltage instead of p.d.) B2 (a) (ratio of voltage to current scores 2/2) (voltage per (unit) current scores 2/2) (voltage per (unit) ampere scores 1/2) $(R = \frac{V}{I} \text{ scores } 1/2$ p.d. = current \times resistance scores 1/2) (b) $R = \frac{R_1 R_2}{R_1 + R_2} \setminus \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ C₁ $R = \frac{10 \times 15}{10 + 15} = 6.0 \,(\Omega)$ C1resistance = $20 + 6 = 26 (\Omega)$ A1 (Possible ECF) (c)(i) $P = VI \setminus I^2R \setminus \frac{V^2}{R}$ C1 C1 $P = 24 \times 0.028$ power = $0.672 \approx 0.67$ (W) A1 $(-1 \text{ for } 10^{\text{n}} \text{ error } : 670 \text{ (W) scores } 2/3)$ **B**1 (c)(ii) (Thermistor's) temperature increases (due to electrical heating) [AW] B1Resistance of thermistor decreases

[Total 10]

4

(a)
$$(\rho = \frac{RA}{L})$$
 ($\therefore \rho \rightarrow$) $\Omega \times m^2/m$ M1
(Cancellation of m leading to) $\rho \rightarrow [\Omega m]$

(Cancellation of m leading to) $\rho \rightarrow [\Omega \text{ m}]$

(b)(i)
$$\rho = \frac{RA}{L}$$
 (Any subject for equation) (Possible credit from (a))

$$A = \pi r^2 = \pi \times (0.62 \times 10^{-3})^2 \quad (= 1.208 \times 10^{-6} \text{ (m}^2))$$

$$R = \frac{6.8 \times 10^{-6} \times 0.32}{\pi \times (0.62 \times 10^{-3})^2}$$
 C1

$$R = 1.8 (\Omega)$$

(b)(ii)
$$V = \frac{R_2}{R_1 + R_2} \times V_0$$
 $V = IR \text{ and } R_T = R_1 + R_2$

$$V = \frac{1.8}{2.8} \times 5.0$$
 $I = 5.0 / 2.8 = 1.786 \approx 1.8 \text{ (A)}$ C1

$$V \approx 3.2 \text{ (V)}$$
 $V = 1.786 \times 1.8 \approx 3.2 \text{ (V)}$ A1 (1.8 (V) scores 2/3)

(Allow ECF from (b)(i) but -1 mark for not using given value of 1.8 Ω)

because the resistance (of wire) increases (as it gets thinner \ longer)

[Total 9]

5 Any nine from:

1 kW h is the energy (transformed by) 1kW (device) in a time of 1 hour

Reference to
$$E = Pt' \setminus 1 \text{ kW h} = 1000 \times 3600$$

B1

$$1 \text{ kW h} = 3.6 \times 10^6 \text{ (J)}$$

Reference to '
$$E = VQ$$
'
1 eV = 1.6×10^{-19} (J)
B1

Energy of electron or lamp in joules
$$(1.6 \times 10^{-13} \text{ J and } 4.3 \times 10^6 \text{ J respectively})$$
 B1

(The above mark to be awarded only if
$$E=Pt$$
 or $E=VQ$ not credited)

Electron:
$$1.0 \, \underline{\text{MeV}}$$
 B1

Two marks for QWC apply to this question. Spelling, punctuation and grammar, B2 Allow two mistakes for two marks.

Allow three/four mistakes for one mark.

More than four mistakes – zero marks.

2822	Mark Scheme		January 2003
6 (a)(i)	length = $2\pi r \times N$ length = $2\pi \times 0.015 \times 250$ length = $23.57 \times 24 \times 2$	$(9.4 \times 10^{-2} \text{ (m) scores } 1/2 \text{)}$	M1 M1 A0
(a)(ii)	F = BIL $F = 3.6 \times 10^{-2} \times 48 \times 10^{-3} \times 24$ $F = 4.147 \times 10^{-2} \approx 4.1 \times 10^{-2}$ (N) (1) (Allow ECF from (a)(i) but -1 mark for not	$F \approx 4.1 \times 10^{-2}$ (N) if length 23.57 m is use	C1 C1 d) A1
(b)	ampere \ amp \ A		B1
			[Total 6]
7 (a)	Quantum of energy \ radiation \	Packet of energy	B1
(b)(i)1	$.\Delta Q = I\Delta t \setminus 1.2 \times 10^{-7} \times 5$ charge = 6.0×10^{-7} (C)	(Any subject and no need for Δ notation (Allow 6×10^{-7} (C))	C1 A1
(b)(i)2	2. number = $\frac{6.0 \times 10^{-7}}{1.6 \times 10^{-19}} = 3.75 \times 10^{12}$	$\approx 3.8 \times 10^{12}$ (Possible ECF)	B1
(b)(ii)	$E = hf \setminus \ E = 6.63 \times 10^{-34} \times 7.0 \times 1$	$0^{14} = 4.64 \times 10^{-19} \approx 4.6 \times 10^{-19} $ (J)	C1
	$hf = \phi + KE_{\text{max}}$ (Allow other so $KE_{\text{max}} = (4.64 - 3.5) \times 10^{-19} = 1.14 \times 10^{-19}$	ubject for photoelectric equation) $10^{-19} \approx 1.1 \times 10^{-19} \text{ (J)}$	C1 A1
(b)(iii			B1
(b)(iii (b)(iii		are twice as many photons)	B1 B1
			[Total 10]
8 (a)	Electrons travel as waves [AW]		B1
(b)	$\lambda = \frac{h}{m}$		C 1
	$mv = 6.63 \times 10^{-34} / 1.6 \times 10^{-15}$		C1
	$mv = 4.14 \times 10^{-19} \approx 4.1 \times 10^{-19}$ Unit: kg ms ⁻¹ \ N s		A1 B1
(c)	$\lambda \approx 5.5 \times 10^{-34} \text{ (m)}$		B1
	Wavelength is (very) small compare	d with the width of the window [A	.W] B1