Question			Marking points	Further guidance	Marks
1	(a)	(i)	Elliptical orbits + Sun at one focus Equal areas in equal times T ² ∝ R ³	Allow 'around sun' $Allow T^2 = R^3$	1 1 1
		(ii)	Copernicus - circular orbits	Allow 1 - IX	1
	(b)		F = Gm ₁ m ₂ /r ² , terms defined	Or in words	1
	(c)	(i)	6.09, 1.20 6.55, 1.90	No sig. fig. penalties	1
		(ii)	4 points plotted correctly straight line of best fit		1
	(d)	(i)	b = gradient gradient measured with suitably large triangle b = 1.5 ± 0.1	Allow ecf from (ii) Don't allow derivation from T ² =kR ³	1 1 1
		(ii)	Ig 21.2 = 1.326 Interpolate to Ig R = 6.18 R = 10 ^{6.18} = (1.5± 0.1) x 10 ⁶ km	1 -81	1 1 1
2	(a)		A measure of brightness As seen from Earth		1
	(b)		$m_s - m_g = 2.5 \log (I_g/I_s)$ $I_g/I_g = 10^{-0.4(ms-mg)}$ $I_g/I_g = 10^{10.184}$ $I_g = 10^{10.184}$	Allow correct ratio in any form	1 1 1
	(c)		Doppler effect/redshifted Expanding universe/Hubble law	Allow reddening by interstellar extinction	1
3	(a)	(i)	Nuclear fusion Hydrogen to helium	Not 'burning' Full credit for pp chain equations	1 1 1
		(ii)	Mass/luminosity/higher, MS lifetime shorter at A or vice versa		1
		(iii)	High mass MS stars are short lived All have become red giants No new stars being formed	Faster reactions Run out of Hydrogen	1
	(b)	(i)	Anywhere above MS on branches		1
		(ii)	High mass - more luminous/brighter More blue		B2
	(c)	(i)	Anywhere below left of MS		B1
		(ii)	Very faint	Not v small	B1
4	(a)		Gamma/Xray - opaque UV - partial Visible- transparent IR- partial Radio- partial (-1 for each error down to 0)	1 mark each, 4 max	4
	(b)		Doppler effect Red/blueshift observed LHS blueshifted, RHS redshifted Centre not shifted → broadening		1 1

			1.5:4	T	- 4 - 1
5	(a)		Infinite universe		
			Each line of sight ends on a star	0.5	1
			(Or shells argument)	2 for shells	
				argument	
			so sky bright at night		1
ļ			big bang model - finite universe	4 max for Olbers	1
			and expanding	or other valid point	1
			radiation from distant stars redshifted	2 max for Big	1
				Bang	
	(b)	(i)	$H_0 = v/r = 21000/300$ = 70 km s ⁻¹ Mpc ⁻¹		
			= 70 km s ⁻¹ Mpc ⁻¹	1	1
		(ii)	70 km s ⁻¹ Mpc ⁻¹ = $70000/(3 \times 10^{22})$ s ⁻¹	Allow ecf from (i)	1
			$T \approx 1/H_0$		1
			$= 1/(2.3 \times 10^{-18}) = 4.2 \times 10^{17} \text{ s}$		1
		(iii)	Rate of expansion is non-uniform		1
			Because of gravity	Or other valid point	1
6	(a)	(i)	$v = 0.96c \rightarrow \gamma = 3.6 \pm 0.4$	Allow calculation	1
		·	$t_o = t/\gamma = 9.38/3.6$	Correct subst.	1
			$= (2.6 \pm 0.3) \text{ y}$		1
		(ii)	As $v \to c$, $\gamma \to \infty$,		1
		` ′	so $m \rightarrow \infty$,	Or accept infinite	1
		i	infinite force needed to accelerate further	energy (E=mc²)	1
	(b)		Muon decay expt	Or valid alternative	1
	(5)		Measure count rates	Allow 1/5 for	i
		į	High speed muons vs slow muons	clocks on aircraft.	1
			At top an bottom of mountain	0/5 for time	1
		1	Fast muons live longer than slow	dilation/length	1
			Cot mucho live longer than slow	contraction	•
				thought expt	
7	(a)	 	No experimental evidence	Allow unattainable	1
'	(a)	ŀ	Or unknown physics	energies	ı
<u> </u>	(b)	 	Matter/antimatter annihilation	GIIGIGIGS	1
	(b)			Or wtte	1
<u> </u>	10	<u> </u>	With slight asymmetry	Of Wile	
	(c)		Thermal equilibrium		1
		<u> </u>	Highly uniform/homogeneous		1

7(a)(i) (ii)	1015 N (accept 1010-1020) 130 N (accept 125-135) both correct, no unit penalty	1	[1]
(b)	F = ma written or implicit (1015-130) = 1100a so $a = 0.80 \text{ ms}^2$ (accept 0.80-0.81, accept 0.8 in place of 0.80) (1015+130) can get only 1 0 0 = 1/3 max)	1 1 1 1	[3]
(c)	18 ms ⁻¹ (accept 15-21) find largest difference/distance between force graphs (and note speed) or clear from graph 'where lines cross' gets 0/1 'it is the terminal velocity' gets 0/1		
(d)	49.7 ms ⁻¹ (accept 49.5 - 50.0) speed is max. when driving force equals/balanced by drag force accept 'speed where forces are equal' if speed has been stated correctly		
(e)	220 N (accept 220 - 225) work done = force x distance = 220x1000 (=2.2x10 ⁵ J) allow ecf from incorrect graph reading 220 x 1000 only gets 1 0 1 = 2/3 22 x (anything) loses last mark	1 1 1	[3]
(f)	work done = $35(2)x1000 = 3.5(2)x10^5$ J accept $(3.5 - 3.6)x10^5$	1	[1]
(g)	distance travelled on 1 litre at 31 ms ⁻¹ = $2.2 \times 16/3.5(2)$ = 10.0 km (9.8 - 10.1) allow (total) energy (in 1 litre of fuel) = $16 \times 2.2 \times 10^5$ for 1/2 reference to $22(\text{ms}^{-1})$ or $31(\text{m s}^{-1})$ gets 0/2		[2]
(h)	$ke = \frac{1}{2}mv^2$ = $\frac{1}{2} \times 1100 \times 31^2$ (= 5.29×10 ⁵ J) subs.	1	[1]
(i)	(ke lost =) heat gained = $mc(\theta_2 - \theta_1)$ $5.3 \times 10^5 = 8 \times 460 \ \Delta\theta$ either of first two lines correct (1) $\Delta\theta = 144 \ \text{K}$ so $\theta_2 = 144 + 15 = 159 \ ^{\circ}\text{C}$ calculation of 144 (1) addition of 15 (1) assumption: brakes initially at 15 \ ^{\circ}\text{C}	}	[3]
(i)	$W = Fd$ or $F = ma$ and $v^2 - u^2 = 2as$ (1 $5.3 \times 10^5 = 9300d$ $9300 = 1100 \ a$ so $a = 8.45 (m s^{-1})$ so $d = 57 \ m$ $31^2 \ (-0^2) = 2 \times 8.45 \ s$ so $s = 57 \ m$ (1 assumption: no work done against (other) drag forces car is on horizontal road air resistance negligible any valid assumption (1) 'constant braking force' and 'constant deceleration' get $0/1$ any 2		[2]