Downloaded from http://www.thepaperbank.co.uk

WIFYING CONCEPTS W PMYSICS Mark Scheme 2826/01 January 2003

Downloaded from http://www.thepaperbank.co.uk

1 (a)(i) 49 minutes (allow 48 minutes 58 or 59 seconds) 47 minutes (allow 47 minutes 1 or 2 seconds) (ii) minimum 98 km h ⁻¹ maximum 102 km h ⁻¹ (iii) 100 ± 2 km h ⁻¹ (iv) 2% (b) e.g. use a different clock which will measure time to the nearest second e.g. use the car odometer	2826/01	Mark Scheme	January 2003		
(ii) minimum 98 km h ⁻¹ maximum 102 km h ⁻¹ (iii) 100 ± 2 km h ⁻¹ (iv) 2% (b) e.g. use a different clock which will measure time to the nearest second e.g. use the car odometer	1 (a)(i) 49 minutes (allow 48 minutes 58 or 59 seconds)	1		
maximum 102 km h ⁻¹ (iii) 100 ± 2 km h ⁻¹ (iv) 2% (b) e.g. use a different clock which will measure time to the nearest second e.g. use the car odometer		47 minutes (allow 47 minutes 1 or 2 seconds)	1		
(iii) 100 ± 2 km h ⁻¹ (iv) 2% (b) e.g. use a different clock which will measure time to the nearest second e.g. use the car odometer		(ii) minimum 98 km h	1		
(iv) 2% (b) e.g. use a different clock which will measure time to the nearest second e.g. use the car odometer	**	maximum 102 km n	4		
(b) e.g. use a different clock which will measure time to the nearest second e.g. use the car odometer			1	6	
which will measure time to the nearest second e.g. use the car odometer		(iv) 2%	1	U	
e.g. use the car odometer	(b)	e.g. use a different clock	1		
e.g. use the car odometer			1		
		e.g. use the car odometer	1	4	
Milicia Mili De Higie accounte man a distance men.		which will be more accurate than a distance from a map	ı	4	
OR e.g. use the marker posts on the motorway (1)		OR e.g. use the marker posts on the motorway (1)			
Which will enable an accurate distance to be found (1)		Which will enable an accurate distance to be found (1)			
For each improvement allow one mark for a baid statement and the second			secona		40
Mark for sensible elaboration.		Mark for sensible elaboration.			10
2 (a) The sum of the kinetic (and potential) energies of all the atoms (in the gas)	2 (2)	The sum of the kinetic (and potential) energies of all the atoms (in the	ne gas) 1		
inclusion of the word 'random' when applied to kinetic energies 1 2	2 (4)	inclusion of the word 'random' when applied to kinetic energies	1	2	
(b) (i) total mass / mass of one atom	(b)		1		
$= 0.020 \text{ (kg) } /6.6 \times 10^{-26} \text{ (kg)}$	(0)		1		
$= 3.03 \times 10^{23} \text{ atoms}$ 0 2			0	2	
(ii) kinetic energy = $\frac{1}{2}$ x 6.6 x 10^{-26} x $(440)^2$			1		
$= 6.39 \times 10^{-21} \text{ J} $ 1 2		$= 6.39 \times 10^{-21} .I$	1	2	
(iii) $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$			1		
4.3 MeV = 6.88 x 10 ⁻¹³ J		4.3 MeV = 6.88 x 10 ⁻¹³ J	1	•	
ratio required = $6.88 \times 10^{-13} / 6.39 \times 10^{-21} = 1.08 \times 10^{8}$		ratio required = $6.88 \times 10^{-13} / 6.39 \times 10^{-21} = 1.08 \times 10^{8}$	1	3	
(c) (i) 19.5% of 3.0×10^{23} (= 5.85×10^{22})	(c)	(i) 19.5% of 3.0×10^{23} (= 5.85×10^{22})	1		
(ii) $1\% + 2\frac{1}{2}\% = 3\frac{1}{2}\%$, $3\frac{1}{2}\%$ of 3.0×10^{23} (= 1.05×10^{22})	(0)	(ii) $1\% + 2\% \% = 3\% \%$, $3\% \%$ of 3.0×10^{23} (= 1.05×10^{22})	1		
(iii) total is 98.5 %			1		
1.5 % of 3.0 x 10^{23} = 4.5 x 10^{21} 1 2		$1.5\% \text{ of } 3.0 \times 10^{23} = 4.5 \times 10^{21}$	1	2	
(iv) twice average speed = 880 m s ⁻¹			1		
percentage less than 900 m s ⁻¹ = 97 %		percentage less than 900 m s ⁻¹ = 97 %	1		
percentage between 880 m s ⁻¹ and 900 m s ⁻¹ about 0.8 %		percentage between 880 m s ⁻¹ and 900 m s ⁻¹ about 0.8 %			
giving 3.8 % = approx. 4 % 1 3			1	3	
(d) sketch shows more atoms at higher speed 1	(d)		1		
and fewer atoms at lower speed 1 2	(ω)		1	2	
	(e)		te)	2	20
e.g. a liquid cools when it evaporates because	(0)	•	1		
faster atoms escape more readily (than slow ones)			1		
OR e.g. a liquid evaporates more quickly at high temperature because			use		
more rapid evaporation from the surface of a liquid			-		
OR e.g. fast atoms in upper atmosphere may reach escape velocity		·	•		

Downloaded from http://www.thepaperbank.co.uk

		Downloaded not	•				
282	6/01		Mark Scheme	J	anuary 2003		
3		velocity (allow speed) (i) 3.4 (± 0.2) s (ii) e.g. gradient = (114 – 8). = 35 (±	/(5 – 2) = : 4) m s ⁻¹	,	1	1 1 2	
	 (c) (i) Straight line through origin additional detail given e.g. one of gradient approx 10, slight curve at end, (ii) upward curve to zero at 4.9 (± 0.2) s positive half loop to zero at 7.9 (± 0.2) s 					2	
,	(d)	C.C. M.L.		-1	I binatia ana		
	dist	ance of fall/ m	gravitational p.e. /J	elastic p.e. /J	kinetic ener	gy /J	 -∤
		0	54 000	0	42,000		
		20	42 000	0	12 000		 -∤
		40	30 000	0	24 000 30 000		 }
ı		(unstretched length)	24 000 18 600	2700	32700		
	29	(equilibrium position)	0	54 000	0		
		90 (bottom) [1] mark for each entry	<u> </u>	34 000			
	(e)	resultant force equal to zero OR upward force (due to ro TWO further ideas required e.g. increase air resistance by spread-eagle position e.g. using different elastic with greater hysteresis e.g. less mass difficult for a particular e.g. increase the damping	orrect method for 2700 pe) = downward force on, or by wearing cloth in the rope person	(weight) es with more drag	9 1 1 1 1 1	5	22
4	• •	As a region in which a (reme.g. on a mass or a charge Example given diagram appropriate explanation of use			1 1 1 1 1 3	2	8
		e.g. gravitational f region, a reduced —perhaps where o e.g. electrical field irregularly shaped (lightning conducto	ield. If this is measure value of g can indicat	e a low density region imentally near an ing near points, it ion microscope to t	on .	J	Ü