

MATERIALS

Mark Scheme 2825/03 January 2003

| 2825/03 |     |       | Mark Scheme                                                                                                                                                         | January 2003              |                  |
|---------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|
| 1.      | (a) | (i)   | 1. example (e.g. quartz);<br>2. example (e.g. glass).                                                                                                               | (1)<br>(1)                | [2]              |
| ••      |     | (ii)  | Crystalline: atoms in regular repeated patterns; Amorphous: atoms randomly placed / no pattern.                                                                     | (1)<br>(1)                | [2]              |
|         |     | (b)   | Diagram 1 mark only if atoms in lower layer shown vertically below ato                                                                                              | ms in up                  | [2]<br>per layer |
|         | (c) | (i)   | Number of atoms in $1m^3 = 7300 / 2.0 \times 10^{-25} = 3.7 \times 10^{28}$ .                                                                                       |                           | [1]              |
|         |     | (ii)  | Volume per atom, $V = 1/3.7 \times 10^{28} = 2.7 \times 10^{-29} \text{ m}^3$                                                                                       | (1)                       |                  |
|         |     |       | Calculation based on V = $\frac{4}{3} \pi r^3$ to give separation of 3.6 x 10 or V = L <sup>3</sup> to give separation of 3.0 x 10 <sup>-10</sup> m.                | ) <sup>-10</sup> m<br>(1) | [2]              |
|         |     | (iii) | Atoms are closer together / more closely packed in white tin.                                                                                                       |                           | [1]              |
| 2.      | (a) |       | Attractive and repulsive forces between A and B are equal / ti in equilibrium.                                                                                      | ne syster                 | m is<br>[1]      |
|         | (b) |       | Repulsive force between atoms is now greater than attractive External force pushing atoms together = repulsive force – attr force (or wtte).                        |                           | (1)<br>[2]       |
|         | (c) | (i)   | All points plotted correctly; Correct graph drawn: straight section through origin and curve                                                                        | (1)                       | [2]              |
|         |     | (ii)  | Use of point on straight line / gradient of straight line used; Correct data from graph; Young modulus between $1.2 \times 10^{11}$ Pa and $1.3 \times 10^{11}$ Pa. | (1)<br>(1)<br>(1)         | [3]              |
|         | (d) | (i)   | Permanent change of shape after removal of stress / force.                                                                                                          | (1)<br>(1)                | [2]              |
|         |     | (ii)  | Slip occurs<br>between adjacent layers of atoms                                                                                                                     | (1)<br>(1)                | [2]              |

| 2825 | <b>5</b> /03 |            | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Januar                                                              | y 2003  |
|------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|
| 3.   | (a)          | (i)        | Free electrons move in random directions; with a range of speeds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)<br>(1)                                                          | [2]     |
|      |              | (ii)       | Free electrons move in the opposite direction to the current; accelerating between collisions with / undergoing collisions v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)<br>with                                                         |         |
|      |              |            | copper ions / atoms; This motion superimposed on random motion of (I).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)<br>(1)                                                          | [3]     |
|      | (b)          | (i)        | nAv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | [1]     |
|      |              | (ii)       | I = Q/t<br>= nAve/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)<br>(1)                                                          | [2]     |
|      | (c)          |            | $v = I/nAe = 0.25/(8.0 \times 10^{28} \times 1.5 \times 10^{-6} \times 1.6 \times 10^{-19})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)                                                                 |         |
|      |              |            | $= 1.3 \times 10^{5} \text{ m s}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)                                                                 | [2]     |
|      | (d)          | ,          | The filament of the bulb is thinner than the copper wire;<br>Tungsten contains fewer free electrons per m³ than copper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>(1)                                                          | [2]     |
| 4.   | (a)          | (i)        | Resistivity = RA/L symbols explained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1)<br>(1)                                                          | [2]     |
|      |              | (ii)       | conductivity = 1/resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | [1]     |
|      | (b)          | <b>(i)</b> | Mention of conduction band and valence bands (of energy levels); Electrons in conduction band are free / can take part in conduction; Electrons in valence band do not take part in conduction; In metals conduction and valence bands overlap so free ele are always present; Temperature increase of metal has no effect on number of in conduction band; Resistance increases / conductivity falls because of increas to flow (of electrons) as amplitude of vibration of atoms / ior increases; In semiconductors, energy gap between valence and condubands; Thermal energy can promote electrons from valence to conduction; At room / normal temperatures few electrons in conduction resistance high / conductivity low; Temperature rise promotes more electrons to conduction baresistance falls / conductivity rises. | (1) electrons (1) ed obstruction (1) duction (1) band so (1) and so |         |
|      |              | (ii)       | Diamond has wide energy gap between valence and conduction to bands; At normal temperatures no electrons are in the conduction to no current can flow / no free electrons; Very high temperatures give sufficient energy for some electronsfer into the conduction band / become free so conduction take place.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1)<br>pand so<br>(1)<br>etrons to                                  | <br>[3] |

| 2825/03 |     |             | Mark Scheme                                                                                                                                            | January 2003        |         |
|---------|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|
| 5.      | (a) | (i)<br>(ii) | In unmagnetised iron domains are randomly arranged.  Magnetisation of iron causes domains to become aligned.                                           | (1)<br>(1)          | [2]     |
|         | (b) | (i)         | hysteresis                                                                                                                                             |                     | [1]     |
|         |     | (ii)        | <ol> <li>P and Q show flux density / magnetism left in the steel who<br/>current is switched off.</li> </ol>                                           | en the              | [1]     |
|         |     |             | 2. R and S show (reverse) current required to demagnetise the                                                                                          | ne steel.           | [1]     |
|         |     |             | 3. Shaded area represents / is proportional to heat developed energy required                                                                          | (1)                 |         |
|         |     |             | in one hysteresis cycle.                                                                                                                               | (1)                 | [2]     |
| •       | (c) | (i)         | Iron can be magnetised to saturation with a smaller current.  Magnetisation of iron more easily reversed.  Other: e.g. comparison of hysteresis loops. | (1)<br>(1)<br>(1) n | nax [2] |
|         |     |             |                                                                                                                                                        |                     |         |
|         |     | (ii)        | Loop enclosing smaller area;<br>Correct shape.                                                                                                         | (1)<br>(1)          | [2]     |
| 6.      | (a) |             | An electron in an atom gains energy and is raised to a higher level.  The electron falls back to a lower energy level, emitting energy                 | (1)<br>gy as a      |         |
|         |     |             | photon of electromagnetic radiation.                                                                                                                   | (1)                 | [2]     |
|         | (b) |             | Energy of photon = $1.8 \times 1.6 \times 10^{-19} \text{ J}$ (= $2.88 \times 10^{-19} \text{ J}$ )                                                    | (1)                 |         |
|         |     |             | h = ENc                                                                                                                                                | (1)                 |         |
|         |     |             | = $2.88 \times 10^{-19} \times 650 \times 10^{-9} / 3.0 \times 10^{-8} = 6.2 \times 10^{-34} \text{ J s}$                                              | (1)                 | [3]     |
|         | (c) | (i)         | Process: Rayleigh scattering;                                                                                                                          | (1)                 |         |
| N.      |     |             | Cause: Presence of small impurity particles / discontinuitie                                                                                           | s. (1)              |         |
|         | •   |             | Process: Absorption of light by the glass; Cause: Photons have energy suitable to excite electrons in glass.                                           | (1)<br>the<br>(1)   | [4]     |
|         |     |             |                                                                                                                                                        |                     | [ŦJ     |
|         |     | (H)         | Rayleigh scattering less for longer wavelength.                                                                                                        | (1)                 |         |
|         |     |             | Infra-red photons have smaller energy than visible light photoless likely to cause excitation.                                                         | ons and<br>(1)      | [2]     |

2825/03

Mark Scheme

January 2003

| 7(a)(i)<br>(ii) | 1015 N (accept 1010-1020)<br>130 N (accept 125-135) both correct, no unit penalty                                                                                                                                                                                                                                                                                                                                                                                                               | 1     | [1] |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| <b>(b)</b>      | F = ma written or implicit<br>(1015-130) = 1100a<br>so $a = 0.80 \text{ ms}^{-2}$ (accept 0.80-0.81, accept 0.8 in place of 0.80)<br>(1015+130) can get only 1 0 0 = 1/3 max)                                                                                                                                                                                                                                                                                                                   | 1 1 1 | [3] |
| (c)             | 18 ms <sup>-1</sup> (accept 15-21) find largest difference/distance between force graphs (and note speed) or clear from graph 'where lines cross' gets 0/1 'it is the terminal velocity' gets 0/1                                                                                                                                                                                                                                                                                               | 1     | [2] |
| (d)             | 49.7 ms <sup>-1</sup> (accept 49.5 - 50.0) speed is max. when driving force equals/balanced by drag force accept 'speed where forces are equal' if speed has been stated correctly                                                                                                                                                                                                                                                                                                              | 1 1   | [2] |
| (e)             | work done = force x distance = 220x1000 (=2.2x10 <sup>5</sup> J) allow ecf from incorrect graph reading 220 x 1000 only gets 1 0 1 = 2/3 22 x (anything) loses last mark                                                                                                                                                                                                                                                                                                                        | 1 1 1 | [3] |
| <b>(f)</b>      | work done = $35(2)x1000 = 3.5(2)x10^5$ J accept $(3.5 - 3.6)x10^5$                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | [1] |
| <b>(g)</b>      | distance travelled on 1 litre at 31 ms <sup>-1</sup> = $2.2 \times 16/3.5(2)$<br>= $10.0 \text{ km}$ (9.8 - 10.1)<br>allow (total) energy (in 1 litre of fuel) = $16 \times 2.2 \times 10^5$ for 1/2<br>reference to 22(ms <sup>-1</sup> ) or 31(m s <sup>-1</sup> ) gets 0/2                                                                                                                                                                                                                   | 1 1   | [2] |
| <b>(h)</b>      | $ke = \frac{1}{2}mv^2$<br>= $\frac{1}{2} \times 1100 \times 31^2$ (= 5.29×10 <sup>5</sup> J) subs.                                                                                                                                                                                                                                                                                                                                                                                              | 1     | [1] |
| <b>(i)</b>      | (ke lost =) heat gained = $mc(\theta_2 - \theta_1)$<br>$5.3 \times 10^5 = 8 \times 460 \ \Delta\theta$ either of first two lines correct (1)<br>$\Delta\theta = 144 \text{ K so } \theta_2 = 144 + 15 = 159 \text{ °C}$ calculation of 144 (1)<br>addition of 15 (1)<br>assumption: brakes initially at 15 °C<br>all heat is dissipated in brakes<br>no heat lost from brakes<br>no air resistance/drag any assumption (1)<br>not Law of Energy<br>assumption without calculation can score 1/3 | 3     | [3] |
| <b>(j)</b>      | $W = Fd \qquad or  F = ma \text{ and } v^2 - u^2 = 2as \qquad (1)$ $5.3 \times 10^5 = 9300d \qquad 9300 = 1100 \text{ a so } a = 8.45 \text{ (m s}^{-1})$ so $d = 57 \text{ m} \qquad 31^2 (-0^2) = 2 \times 8.45 \text{ s so } s = 57 \text{ m}  (1)$ assumption: no work done against (other) drag forces car is on horizontal road air resistance negligible any valid assumption  (1)                                                                                                       |       |     |
|                 | 'constant braking force' and 'constant deceleration' get 0/1 any 2                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     | [2] |