Downloaded from http://www.thepaperbank.co.uk

OCR

RECOGNISING ACHIEVEMENT

MEALTH PHYSICS

Mark Scheme 2825/02 January 2003

1.	(a)(i)	$qV = 1.6 \times 10^{-19} \times 100000$	1	
١.	(ω)(ι)	$= 1.6 \times 10^{-14} \mathrm{J}$	1	
	(ii)	$E = hc/\lambda$ or $E = hf$ and $c = f \times \lambda$	1	
		$\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 1.6 \times 10^{-14}$ = 1.24 x 10 ⁻¹¹ m	1	
	(b)	Electrons knocked out of (deep-lying) energy levels	1	
	(0)	Outer electron fills vacancy	1	
		X-ray photon is emitted with energy equal to the difference in level		
	(c)	Ba has high atomic number	1	
		so attenuates large amounts so less X-rays reach film	1	
		soft tissue has low Z	1	
		so less absorption / larger contrast with Ba	1	[13]
2.	(a)(i)	$H = Q \times D \text{ or } 10 \times 10^{-3} = 2 \times D$	1	
	`	$D = 5 \times 10^{-3}$	1	
	7!!\	Gy	1	
	(ii)	$E = D \times m = 5 \times 10^{-3} \times 60$ (allow ecf from (i)) E = 0.30 J	1	
	(b)	X-ray (pulses) are sent through the body from different directions	i	
	(-)	Intensity of received pulses measured for each angle	1	
		Computer constructs image from data received at each position	1	
	(c)	stochastic effect: any 1 from	1	
		no threshold	(1)	
		probability is proportional to the dose received	(1)	
		or differentiation by description of non-stochastic:		
		severity not affected by threshold level or severity increases with increase in dose	(1)	
		any 5 relevant points e.g.	(1)	
		cells killed at a greater rate for cells that divide	(1)	
		cancerous cells divide at a greater rate	(1)	
		rotating beam / etc.,	(1)	
		tumour at centre of rotation cancerous cells have slow rate of repair	(1) (1)	
		X-rays given in fractions	(1)	[15]
3.	(a)	IL = 10 log I / l _o	0	
-	()	$I_0 = 10^{-12} \mathrm{Wm}^{-2}$	1	
		$55 = 10 \log 1 / 10^{-12}$	1	
		$I_1 = 3.16 \times 10^{-7} \text{ Wm}^{-2}$ $I_2 = 2.5 \times 10^{-6} \text{ Wm}^{-2}$	1 1	
		$I_1 - 2.5 \times 10^{-4} \text{ Will}$ $I_1 / I_2 = 7.9$	1	
		(allow reasoned argument leading to answer of 8 for full credit)	•	
	(b)(i)	shape	1	
		minimum intensity at 10 ⁻¹² Wm ⁻²	1	
		maximum intensity at 10 ² Wm ⁻²	1	
		frequency range 20 – 20 kHz frequency of minimum at 2 – 3 k Hz	1	
	(ii)	line above (b)	1	
	• •	minimum at 10 ⁻⁸ Wm ⁻²	1	[12]

Downloaded from http://www.thepaperbank.co.uk 2825/02 Mark Scheme January 2003

A	(0)	acatania:		
4.	(a)	scotopic:	4	
		ref. to low intensity light ref. to no colour detail	1	
			ı	
		photopic:	4	
		ref. to high intensity light	1	
		ref. to perception of colour	1	
	(h)	allow 2 out of 4 if the wrong way around		
	(p)	As light intensity falls, colour fades as cones become less	4	
		responsive	1	
		peripheral vision dominates as rods become more responsive or		
		(distinct) outline seen with no detail / don't see as well / fovea stops	4	
		working	1	
	(=\/i\	nothing is detected at 0 Wm ⁻²	1	
	(c)(i)	shape and position of green	1	
		red and blue position	1	
		All lines start on and higher than 400nm All lines end before and on 750nm	1	
	/ii\	max. response of the cones and rods at about 500 nm	1	
	(ii)	relevant comment e.g	1	
		high absorption at this wavelength or easily detected by eye	ı	
		seen both at night and in the day		[13]
		Soon both at hight and in the day		[10]
5.	(a)	Σ clockwise moments = Σ anticlockwise moments (for equilibrium)	1	
٥.	(ω)	$E \times 0.020 = 20 \times 0.15 + 120 \times 0.33$	1	
		E = 2130 (N)	1	
	(b)	MA = load / effort	ì	
	(-)	Allow either	•	
		MA = 120 / 2130 = 0.056 or		
		MA = 140 / 2130 = 0.066	1	
	(c)	(perpendicular) distances of (lines of action of) forces to fulcrum	-	
	` '	are less	1	
		both reduced by the same factor	1	[7]
		·		
6.	(a)(i)	t = s/v or		
		$t = 0.018 / 1.5 \times 10^3$	1	
		$t = 1.2 \times 10^{-5} s$	1	
	(ii)	$t_2 = 0.016 / 4.0 \times 10^3 = 4.0 \times 10^{-6} s$	1	
		allow 2 x answer to (a)(i)		
	(b)(i)		1	
	(ii)	$2.4 \times 10^{-5} / 4.0 \times 10^{-6} = 6$	1	
	(iii)	B at 6.0 cm from A	1	
		C at 2.0 cm from B	1	
		(ignore heights)		
	(iv)	large reflection at the air / skin boundary	1	
		due to the large difference in acoustic impedance between air and		
		skin	1	
		· · · · · · · · · · · · · · · · · · ·	1	
		(or there is very little ultrasound to be reflected off subsequent		
		boundaries.)		[10]

any 3

3

[3]

Downloaded from http://www.thepaperbank.co.uk								
2825/02	Mark Scheme	January 2003						
(j)	$W = Fd$ or $F = ma$ and $v^2 - u^2 = 2as$ 5.3x10 ⁵ = 9300d 9300 = 1100 a so $a = 8.45 \text{(m s}^{-1})$	(1)						
	$5.3 \times 10^5 = 9300d$ $9300 = 1100 a$ so $a = 8.45 (m s-1)$ so $d = 57 m$ $31^2 (-0^2) = 2 \times 8.45 s$ so $s = 57 m$ assumption: no work done against (other) drag forces car is on horizontal road air resistance negligible	(1)						
	any valid assumption 'constant deceleration' get 0	(1) /1						
	any 2	2 [2] [Total 20]						

Downloaded from http://www.thepaperbank.co.uk