

Mark Scheme Summer 2007

GCE

GCE Physics (6735/01)

a)	Show	that

See 'v = $\frac{2\pi r}{T}$ ', OR ' $\omega = \frac{2\pi}{T}$ '

Substitution of $(60\times60\times24)$ s or 86400s for T (giving 7.27×10^{-5} , no u.e.)

Unit of ω

s⁻¹/rad s⁻¹

b) Height above Earth's surface

Statement / use of $\frac{GM_Em}{r^2} = \frac{mv^2}{r}$ OR $\frac{GM_Em}{r^2} = mr\omega^2$

[Equations may be given in terms of accelerations rather than forces]

[Third mark (from below) may also be awarded here if (r_E+h) is used for r]

Correct value for r, i.e. $4.2(3) \times 10^7$ m

Use of h =their $r - R_E$

Correct answer = $(3.58 - 3.60) \times 10^7$ m [no ecf]

Example of answer:

$$\frac{GM_E m}{r^2} = \frac{mv^2}{r}$$

$$\Rightarrow \frac{GM_E}{r^2} = \frac{v^2}{r} = \frac{(\omega r)^2}{r} = \omega^2 r$$

$$\frac{r^2}{r^2} - \frac{r}{r} - \frac{r}{r} = \omega$$

$$\therefore GM_E = \omega^2 r^3$$

$$\therefore r = \sqrt[3]{\frac{GM_E}{\omega^2}} = \sqrt[3]{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}{(7.27 \times 10^{-5} \text{ s}^{-1})^2}}$$

$$= 4.23 \times 10^7 \text{ m}$$

$$h = 4.23 \times 10^7 \text{ m} - 6.38 \times 10^6 \text{ m}$$

$$=3.59\times10^7 \text{ m}$$

Total 7 marks

2.	
	Add to diagram.
	Arrows at A and B, both pointing directly away from the nucleus. [Arrow end (head or tail) need not touch A /B, but direction must be correct. Gauge by eye, accept dotted construction lines as indication of intent]
	Calculation of force
	Use of $F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$ or $F = \frac{kQ_1 Q_2}{r^2}$
	[ignore error/omission of '2' and/or '79' or 'e' or '1.6 \times 10 ⁻¹⁹ ' for this first mark, providing numerator clearly has a product of charges and denominator a distance value squared. Ignore power of 10 errors in values of Q or r]
	$2 \times 1.6 \times 10^{-19}$ C and $79 \times 1.6 \times 10^{-19}$ C seen (consequential mark, dependent upon correct use of equation previously)
	Correct answer = 1.6 - 1.7 N
	Example of answer:
	$F = \frac{Q_1 Q_2}{4\pi \varepsilon_o r^2} = \frac{(79 \times 1.6 \times 10^{-19} \text{ C}) \times (2 \times 1.6 \times 10^{-19} \text{ C})}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times (1.5 \times 10^{-13} \text{ m})^2}$
	= 1.62 N
	Effect on motion of α
	Slows down [decelerates] and then speeds up again [accelerates]. (both needed) [accept 'slows down at A and speeds up at B]
	1
L	Total 5 marks

3.		
a)	How capacitors are connected	
	Box A = in parallel Box B = in series [Accept diagrams] [N.B. If A 'in series' and B 'in parallel', max 3 in explanation section below]	
	[N.B. II A III series and b III paratter, max 3 iii explanation section below]	
	<u>Explanation</u>	
	Answer with no word or symbol reference to energy scores 3/4 max. Answer with no reference to any relevant formulae scores 3/4 max.	
	More energy stored in A ['A' may be implied by argument] ✓	
	The same p.d. (' V ')	
	(So) $C_A > C_B$ [or demonstration by numerical example]	
	Use of* W = $\frac{1}{2}CV^2$ [e.g. $\frac{1}{2}C_AV^2 > \frac{1}{2}C_BV^2$]	
	\checkmark OR use/statement of E = $\frac{1}{2}QV$ AND $Q=CV$	
	Use of* either equivalent capacitance formula [correctly stated; may be word equation]	
	* i.e. Referred to as part of explanation. Do not credit bald transcription of equations given in the list at the back of the paper without context, nor as marginalia]. [Award marks for correct, non-contradictory statements even if the candidate has	
	given the wrong combinations at a(i), up to a maximum of 3 marks] Max 4	
b)	Addition of large resistor in discharging circuit	
	Valid observation in terms of brightness or duration of illumination ✓	
	Supporting explanation in terms of circuit behaviour	
	[Max 1 mark if explanation does not support observation, or is internally contradictory, or if description does not include a visual observation]	
c)	Addition of large resistor in charging circuit	
	Valid observation in terms of brightness or duration of illumination ✓	
	Supporting explanation in terms of circuit behaviour	
	[Max 1 mark if explanation does not support observation, or is internally contradictory, or if description does not include a visual observation]	
	Total 9 marks	

'(Fleming's) left hand rule' / magnetic fields interact/combine/overlap [not 'repel', nor 'interfere'] / reference to current flowing in magnetic field /catapult field ✓ Force acting on the wire linked to moment [not just 'pivoting'] (about P) ✓ Force to right / anticlockwise moment [detail of direction] ✓ When wire leaves mercury, current → 0 / force → 0 / moment → 0 . ✓ [not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury) ✓	4.			
Ignore references to electromagnetic induction/Lenz's Law QoWC '(Fleming's) left hand rule' / magnetic fields interact/combine/overlap [not 'repel', nor 'interfere'] / reference to current flowing in magnetic field /catapult field Force acting on the wire linked to moment [not just 'pivoting'] (about P) Force to right / anticlockwise moment [detail of direction] \checkmark When wire leaves mercury, current \rightarrow 0 / force \rightarrow 0 / moment \rightarrow 0 . \checkmark [not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury) \checkmark Show that Use of moment equation, i.e. $5.0 \times 10^{-4} \text{ N m} = F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of $6 \times 10^{-2} \text{ m}$ for d \checkmark Correct answer = $8.3 \times 10^{-3} \text{ (N)}$ [no u.e.] [Reverse argument scores 2/3] \checkmark Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = Bil$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = Bil \rightarrow I = \frac{F}{Bi}$ $\frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]		Explanation of kicking		
QoWC '(Fleming's) left hand rule' / magnetic fields interact/combine/overlap [not 'repel', nor 'interfere'] / reference to current flowing in magnetic field /catapult field Force acting on the wire linked to moment [not just 'pivoting'] (about P) Force to right / anticlockwise moment [detail of direction] When wire leaves mercury, current \rightarrow 0 / force \rightarrow 0 / moment \rightarrow 0 . [not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury) **Max 5** Show that Use of moment equation, i.e. $5.0 \times 10^{-4} \text{N m} = F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of $6 \times 10^{-2} \text{m}$ for d **Correct answer = $8.3 \times 10^{-3} \text{N}$ [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{N m}}{(1.5 + 4.5) \times 10^{-2} \text{m}} = 8.33 \times 10^{-3} \text{N}$ Circuit current Use of $F = BIl$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{A}$ Example of answer: $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{N}}{4.0 \times 10^{-2} \text{T} \times 9.0 \times 10^{-2} \text{m}} = 2.31 \text{A}$ [8x10 ⁻³ N \rightarrow 2.22A]				
'(Fleming's) left hand rule' / magnetic fields interact/combine/overlap [not 'repel', nor 'interfere'] / reference to current flowing in magnetic field /catapult field / Force acting on the wire linked to moment [not just 'pivoting'] (about P) / Force to right / anticlockwise moment [detail of direction] / When wire leaves mercury, current $\rightarrow 0$ / force $\rightarrow 0$ / moment $\rightarrow 0$. [not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury) / Max 5 Show that Use of moment equation, i.e. 5.0×10^{-4} N m = $F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of 6×10^{-2} m for d / Correct answer = 8.3×10^{-3} (N) [no u.e.] [Reverse argument scores 2/3] / Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = BII$ [or correct rearrangement] with $I = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3$ A 2 Example of answer: $F = BII \rightarrow I = \frac{F}{BI}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A} [8 \times 10^{-3} \text{ N} \rightarrow 2.22 \text{ A}]$				
'repel', nor 'interfere'] / reference to current flowing in magnetic field / catapult field / Force acting on the wire linked to moment [not just 'pivoting'] (about P) / Force to right / anticlockwise moment [detail of direction] / When wire leaves mercury, current $\rightarrow 0$ / force $\rightarrow 0$ / moment $\rightarrow 0$. [not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury) / Max 5 Show that Use of moment equation, i.e. $5.0 \times 10^{-4} \text{N m} = F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of $6 \times 10^{-2} \text{m}$ for d / Correct answer = $8.3 \times 10^{-3} \text{(N)}$ [no u.e.] [Reverse argument scores 2/3] / Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{N m}}{(1.5 + 4.5) \times 10^{-2} \text{m}} = 8.33 \times 10^{-3} \text{N}$ Circuit current Use of $F = BII$ [or correct rearrangement] with $I = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{A}$ Example of answer: $F = BII \rightarrow I = \frac{F}{BI}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{N}}{4.0 \times 10^{-2} \text{T} \times 9.0 \times 10^{-2} \text{m}} = 2.31 \text{A}$ [8x10 ⁻³ N \rightarrow 2.22A]		QoWC	✓	
Force to right / anticlockwise moment [detail of direction]		'repel', nor 'interfere'] / reference to current flowing in magnetic field /ca		
When wire leaves mercury, current $\rightarrow 0$ / force $\rightarrow 0$ / moment $\rightarrow 0$. [not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury)		Force acting on the wire linked to moment [not just 'pivoting'] (about P)	✓	
[not just 'circuit is incomplete'] Idea that wire's weight produces a moment (returning it to mercury) Max 5 Show that Use of moment equation, i.e. $5.0 \times 10^4 \text{ N m} = F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of $6 \times 10^{-2} \text{ m}$ for d Correct answer = 8.3×10^{-3} (N) [no u.e.] [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = BIl$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]		Force to right / anticlockwise moment [detail of direction]	✓	
Idea that wire's weight produces a moment (returning it to mercury) Max 5 Show that Use of moment equation, i.e. $5.0 \times 10^{-4} \text{N m} = F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of $6 \times 10^{-2} \text{m}$ for d Correct answer = $8.3 \times 10^{-3} \text{(N)}$ [no u.e.] [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{N m}}{(1.5 + 4.5) \times 10^{-2} \text{m}} = 8.33 \times 10^{-3} \text{N}$ Circuit current Use of $F = Bil$ [or correct rearrangement] with $l = 9 \text{cm}$ [lgnore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{A}$ Example of answer: $F = Bil \rightarrow I = \frac{F}{Bi}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{N}}{4.0 \times 10^{-2} \text{T} \times 9.0 \times 10^{-2} \text{m}} = 2.31 \text{A}$ [8x10 ⁻³ N \rightarrow 2.22A]			✓	
Show that Use of moment equation, i.e. 5.0×10^{-4} N m = $F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of 6×10^{-2} m for d Correct answer = 8.3×10^{-3} (N) [no u.e.] [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = BII$ [or correct rearrangement] with $I = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3$ A Example of answer: $F = BII \rightarrow I = \frac{F}{BI}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10-3N \rightarrow 2.22A]			✓	
Use of moment equation, i.e. $5.0 \times 10^{-4} \text{ N m} = F \times d$ [accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of $6 \times 10^{-2} \text{ m}$ for d Correct answer = $8.3 \times 10^{-3} \text{ (N)}$ [no u.e.] [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = BIl$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = BIl \rightarrow I = \frac{F}{BI}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]			Max 5	
[accept any numerical value for d between 1.5 (cm) and 10.5 (cm)] Use of 6×10^{-2} m for d Correct answer = 8.3×10^{-3} (N) [no u.e.] [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = Bll$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = Bll \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10-3N \rightarrow 2.22A]		Show that		
Correct answer = 8.3×10^{-3} (N) [no u.e.] [Reverse argument scores 2/3] Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = BIl$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]			✓	
Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{m}} = 8.33 \times 10^{-3} \text{ N}$ $\frac{\text{Circuit current}}{\text{Use of } F = BIl \text{ [or correct rearrangement] with } l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] $\text{Answer} = 2.2/2.3 \text{ A}$ $\text{Example of answer:}$ $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ $[8x10^{-3}\text{N} \rightarrow 2.22\text{A}]$		Use of 6×10^{-2} m for d	✓	
Example of answer: $F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{m}} = 8.33 \times 10^{-3} \text{ N}$ Circuit current Use of $F = BII$ [or correct rearrangement] with $I = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = BII \rightarrow I = \frac{F}{BI}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10-3N \rightarrow 2.22A]		Correct answer = 8.3×10^{-3} (N) [no u.e.] [Reverse argument scores 2/3]	✓ 3	
Use of $F = BIl$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]		Example of answer:	3	
Use of $F = Bll$ [or correct rearrangement] with $l = 9 \text{cm}$ [Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = Bll \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]		$F = \frac{Moment}{d} = \frac{5.0 \times 10^{-4} \text{ N m}}{(1.5 + 4.5) \times 10^{-2} \text{ m}} = 8.33 \times 10^{-3} \text{ N}$		
[Ignore powers of 10. No ecf for their force if different; beware use of 5.0×10^{-4}] Answer = $2.2/2.3 \text{ A}$ Example of answer: $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A}$ [8x10 ⁻³ N \rightarrow 2.22A]		Circuit current		
Example of answer: $F = BIl \rightarrow I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A} \qquad [8x10^{-3}\text{N} \rightarrow 2.22\text{A}]$				
$F = BIl \to I = \frac{F}{Bl}$ $\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A} \qquad [8 \times 10^{-3} \text{N} \to 2.22 \text{A}]$		Answer = 2.2/2.3 A	✓ 2	
$\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A} \qquad [8 \times 10^{-3} \text{N} \to 2.22 \text{A}]$		·		
$\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A} \qquad [8 \times 10^{-3} \text{N} \to 2.22 \text{A}]$		$F = BIl \to I = \frac{F}{Bl}$		
Total 10 marks		$\therefore I = \frac{8.33 \times 10^{-3} \text{ N}}{4.0 \times 10^{-2} \text{ T} \times 9.0 \times 10^{-2} \text{ m}} = 2.31 \text{ A} \qquad [8 \times 10^{-3} \text{N} \to 2.22 \text{A}]$		
TOLDI TO TIME KA	-	Total 1	0 marks	

5. a)	Direction of e.m.f.?		
,	Hub '-' and Rim '+'. [Allow mark for either on its own, but not if contradicted.	1 ./	
	Thus and fair 4. [Allow mark for either offits own, but not it contradicted.	_	
	Why a constant e.m.f.?		
	Reference to flux cutting / rate of change of flux / change of flux linkage due to spotion / spokes moving at right angles to field / Reference to Faraday's Law		
	Constant rate of spin implies constant rate of flux cutting. [Link made clear] [continuous process does not mean constant rate]	✓	
	The time for one revolution		
	Use of $\varepsilon = \frac{BA}{f}$ with 'A' recognisable as area of a circle	✓	
	[ignore power of 10 errors for e.m.f. and radius values, and inclusion of N=24]		
	Correct substitution of all values [but only N = 1 acceptable here]	✓	
	Correct answer 0.31 - 0.32 s [t = 7.6s scores 1/3; t = 1.12s scores 0/3, t = 0.64s scores 1/3 here]	✓	
	3 Example of answer:		
	$\varepsilon = \frac{\varphi}{t} = \frac{BA}{t} \to t = \frac{BA}{\varepsilon}$		
	$\therefore t = \frac{2.8 \times 10^{-5} \text{ T} \times \pi \times (30 \times 10^{-2} \text{ m})^2}{25 \times 10^{-6} \text{ V}} = 0.317 \text{ s}$		
	Alternative answer		
	Use of $\varepsilon = Blv$ with $v = (mean)$ velocity of spoke.	(✓)	
	$\rightarrow v = 2.98 \text{ ms}^{-1}$	(✓)	
	Hence rim velocity = $2.98 \times 2 = 5.96 \text{ ms}^{-1}$.		
	$\to t = \frac{2\pi r}{v_{RIM}} = \frac{2\pi \times 0.3 \mathrm{m}}{5.96 \mathrm{ms}^{-1}} = 0.316 \mathrm{s}.$	(✓)	
	[t = 0.63s scores 2/3 here]		
	What effect?		
	(i) Reduced [accept 'halved'] AND		
	Rate of flux cutting is reduced / Fewer field lines are being cut / Component of I	Earth's	
E 40	GCE Physics 64		

field perpendicular to the wheel is less / Flux through wheel is less / Area of wheel perpendicular to field is less / Wheel is no longer perpendicular to the field

[do not credit answers suggesting changes in the field strength itself]

(ii) Increased / increasing AND

Rate of flux cutting [etc.] would be increasing

(iii) (Reduced to) zero [but not 'very small' / 'negligible', etc.] AND

No flux cut by spoke(s) / No component of the Earth's field perpendicular to the wheel / No flux through wheel / Wheel is spinning parallel to the field / in plane of field \checkmark [but not just ' $\Delta\Phi$ = 0', nor 'motion is not perpendicular to field']

[Allow 1/3 for three correct statements of ' ϵ ' outcome without any explanation, but only if score would otherwise be zero.]

[Disallow 'breaking' for 'cutting' on first occasion in entire question, but allow, ecf, thereafter]

3

Total 9 marks