

Mark Scheme Summer 2007

GCE

GCE Salters Horners Physics (6755/02)

6755-02 Unit Test PSA5

1.

(a) Ratio of speed of sound in steel to air: Use of $c^2 = E/\rho$ Correct answer [5200 ms⁻¹] So, ratio = 5200/330 = 163 Example of calculation: $c^2 = 2.1 \times 10^{11} \text{ Nm}^{-2} / 7.9 \times 10^3 \text{ kgm}^{-3}$ $\approx 2.7 \times 10^7 \,\mathrm{m}^2 \mathrm{s}^{-2}$ So $c = 5200 \text{ ms}^{-1}$ (b) Why sound travels faster through steel: Atoms/molecule /particles more tightly packed in steel than ✓ in air So vibrations/energy/wave passes more quickly/easily from ✓ 2 atom to atom (c) Why relationship is inappropriate: Idea that equation only applies to vibrations that are spreading in all directions - can be from a diagram and one point from: vibrations are transmitted along rail in one direction energy absorbed / attenuated (as vibration passes ✓ 2 from atom to atom) Total

2. (a)			
(a)	Choice of construction materials:		
	Reference to porous/fibrous materials	\checkmark	
	Plastic deformation absorbs energy	✓	
	Air pockets cause reduce sound transmission/reflection at air boundaries	✓	3
(b)	Manning of recommen		
	Meaning of resonance: Parts of building have about the same natural frequency as	✓	
	driving vibrator	·	
	so vibrate with increased/large amplitude or maximum/large energy transfer occurs	✓	2
(c) (i)	Why springs reduce vibration:		
	Spring deforms (instead of building)	✓	
	absorbing energy	✓	2
(ii)	Less damage during earthquake:		
	vibration of building is <u>damped</u> / <u>amplitude</u> of vibration is	,	4
	reduced (so damage to building would be less)	v	ז Total
	•		10tai

3. (a)	Expression for gravitational force: $F = GMm/r^2$	✓	1
(b)	Expression for gravitational field strength: $g = force on 1 kg$, so $g = GM/r^2$, or $g = F/m so g = GM/r^2$	✓	1
(c)	Radius of geostationary orbit: Idea that $a = g$, and suitable expression for a quoted [can be in terms of forces] substitution for velocity in terms of T algebra to obtain required result	✓ ✓ ✓	3
	Example of derivation: $g = v^2/r$ or $g = \omega^2 r$ and $v = 2\pi r/T$ or $\omega = 2\pi/T$ so $(2\pi/T)^2/r = GM/r^2$ or $(2\pi/T)^2 r = GM/r^2$, leading to expression given		
(d)	Calculation of radius: Substitution into expression given Correct answer [4.2 x 10 ⁷ m]	✓ ✓	2
	Example of calculation: $r^3 = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2} \times 6.0 \times 10^{24} \text{ kg} \times (24 \times 60 \times 60 \text{ s})^2 / 4\pi^2$ $= 7.6 \times 10^{22} \text{ m}^3$ So $r = 4.2 \times 10^7 \text{ m}$		
(e) (i)	Satellite with greater mass: Yes - because, in geostationary orbit, r constant so acceleration remains the same, regardless of mass	✓	
(ii)	Satellite with greater speed: No + suitable argument [e.g. for geostationary orbit, T and r are fixed, so v cannot increase ($v = 2\pi r/T$)]	✓	2
(f)	Why satellite must be over equator: Idea that centre of satellite's orbit must be the centre of the Earth (can be shown on diagram) there must be a common axis of rotation for the satellite and	√	
	the Earth / the satellite's orbit must be at right angles to the spin axis of the Earth	✓	2
		T	otal 11

	4. (a)	Description of fusion:	,	
		Two light nuclei combine to form a single (heavier) nucleus Energy is released	√	2
(b)	Need high temperature and high density / pressure	✓	
		 and one point from: to overcome electrostatic repulsion / for a large collision rate a reference to containment problems 	✓	2
(c)	When hydrogen nuclei fuse, there is a loss of mass This is converted into energy, according to: $\Delta E = c^2 \Delta m$	✓	2 Total 6